TO:

From:

ATTN: Antoinette Warr
City of Houston MSD Program 1002 Washington Avenue, 3rd Floor Houston, Texas 77002

SQ Environmental
P.O. Box 1991

Austin, TX 78767

Re: Goforth Street Property
6525 Goforth St, 6505 Foster St, 0 Foster St Houston, Harris County, Texas 77021

Date: 03 April 2024

PN: 1018.029.003
P

CITY OF HOUSTON MUNICIPAL SETTING DESIGNATION APPLICATION

DESIGNATED PROPERTY:
6525 GOFORTH ST, 6505 FOSTER ST, 0 FOSTER ST HOUSTON, HARRIS COUNTY, TEXAS 77021

Prepared on behalf of:

Hindsight Investments LLC and 542 Allston Rental LP
1002 Sherwood Drive
Seabrook, Texas 77546

03 APRIL 2024
REVISION NO. 1

SQ Environmental, LLC
PO Box 1991
Austin, Texas 78767-1991
(512) 900-7731
www.SQEnv.com

TABLE OF CONTENTS

APPENDICES

> APPENDIX A
> APPENDIX B
> APPENDIX C
> APPENDIX D
> APPENDIX E
> APPENDIX F
> APPENDIX G
> APPENDIX H
> APPENDIX I
> APPENDIX J
> APPENDIX K
> APPENDIX L
> APPENDIX M
> APPENDIX N
> APPENDIX O
> APPENDIX P
> APPENDIX Q
> APPENDIX R
> APPENDIX S
> APPENDIX T
> APPENDIX U
> APPENDIX V
> APPENDIX W
> APPENDIX X
> APPEND

CITY OF HOUSTON APPLICATION

APPLICANT INFORMATION

Phone No.: 713-878-7093
Fax No.: \qquad

Email: jake.stein@comcast.net

Contact Information

Name of Contact: Jacob Stein

Title: Property Owner

Address:	1002 Shorewood Drive	Seabrook	TX	(C7546
	(Street)	(City)	(State)	(Zip)

Phone No.: 214-252-5323
Fax No.: \qquad

Email: jake.stein@comcast.net

Application Preparation
Application Prepared by: Trevor Cole
Company: SQ Environmental, LLC
Address: 21 Cornerbrook PI $\begin{array}{lr}\text { Spring } & \text { TX } \\ \text { (City) } & \text { (State) }\end{array}$ ate 77381 (Street)
(City)
(Zip)
Phone No.: 850-408-1817
Fax No.: \qquad

Email: t.cole@sqenv.com

SITE INFORMATION

Site HCAD No(s): 0582240000011 (6525 Goforth St), 0582230000013 (6505 Foster St),
0582230000012 (0 Foster St) and surrounding City of Houston Right of Ways

Site Name: Goforth Street Property

Site Size: $\underline{\underline{3.1271} \text { acres }}$

Site Address: 6525 Goforth St, 6505 Foster St, 0 Foster St Houston TX 77021
(Street) (City) (State) (Zip)

Owner: Hindsight Investments, LLC

Owner Address:	1002 Shorewood Drive	Seabrook	TX	77546
	(Street			

Name of Contact: Jacob Stein

Title: Hindsight Investments, LLC - Owner

Organization: Hindsight Investments, LLC

Phone No.: 214-252-5323	Fax No.:
Email: jake.stein@comcast.net	

Additional Owner List

Owner: 542 Allston Rental LP

Owner Address:	616 Rutland St	Houston,	TX
(Street)	(City)	(State)	(Zip)

Name of Contact: Joseph Tomczak

Title: 542 Allston Rental LP - Owner

Organization: 542 Allston Rental LP
Phone No.: 832-516-6060
Fax No.: \qquad
Email: joe@abbcott.com

ITEM	COH Use
Executive Summary	
1. Provide a legal description of the boundaries of the designated property, including metes and bounds, and a copy of the deed for the property. A professional surveyor currently registered with the Texas Board of Professional Surveying must certify that all property descriptions with metes and bounds are accurate. Label "Appendix A"	
2. A description of the current use, and, to the extent known, the anticipated uses, of the designated property and properties within 500 feet of the boundary of the designated property. Label "Appendix B"	
3. A site map showing: a. The location of the designated property. b. The topography of the designated property as indicated on publicly available sources, which must note the watershed including the nearest surface water body and whether the designated property is located in a floodplain or floodway, as those terms are defined in Chapter 19 of the Code of Ordinances. c. The detected area of groundwater contamination. d. The location of all soil sampling locations and all groundwater monitoring wells. e. Groundwater gradients, to the extent known, and direction of groundwater flow. f. The ingestion protective concentration level exceedance zone for each contaminant of concern, to the extent known. g. Depth to groundwater for each affected zone. Label "Appendix C"	
4. Provide for each contaminant of concern within the designated groundwater: a. A description of the ingestion protective concentration level exceedance zone and the non-ingestion protective concentration level exceedance zone, including a specification of the horizontal area and the minimum and maximum depth below ground surface. b. The level of contamination, the ingestion protective concentration level, and the non-ingestion protective concentration level, all expressed as mg / L units. c. Its basic geochemical properties (e.g., whether the contaminant of concern migrates with groundwater, floats or is soluble in water). Label "Appendix D"	

ITEM	COH Use
5. A table displaying the following information for each contaminant of concern, to the extent known: a. The maximum concentration level for soil and groundwater, the ingestion protective concentration level, and the non-ingestion protective concentration level, all expressed as mg / L units. b. The critical protective concentration level without the municipal setting designation, highlighting any exceedances. Label "Appendix E"	
6. If the plume extends beyond the limits of property owners listed in this application, list the owners of the additional property beneath which the plume(s) extend(s), and a summary of interactions with those property owners about the plume(s) and this MSD application. Please Note: You are not required under this item to notify affected property owners, only to provide a summary of who affected property owners are, and if there have been any communications. "No contact" can be an acceptable answer. Label "Appendix F"	
7. A statement as to whether the source of the plume has been removed, the plume of contamination is stable (i.e. no change), or contracting, and the plume is delineated, with the basis for that statement. Please include historical sampling data. Label "Appendix G"	
8. A statement as to whether contamination on and off the designated property without a municipal setting designation will exceed a residential assessment level as defined in the Texas Risk Reduction Program or analogous residential level set by EPA, if known, and the basis for that statement. Label "Appendix H"	
9. A statement as to whether contamination on and off the designated property with a municipal setting designation will exceed a residential assessment level as defined in the Texas Risk Reduction Program or analogous residential level set by EPA, if known, and the basis for that statement. Label "Appendix l"	
10. Identification of the points of origin of the contamination, to the extent known. Please list the Potentially Responsible Party (PRP), if unknown, state unknown. (applications without the PRP listed will be deemed incomplete). Label "Appendix J"	

| ITEM | COH Use |
| :--- | :--- | :--- |
| 11.Environmental regulatory actions, litigation, and plume identification.
 a. A description of any environmental regulatory actions that have been
 taken within the past five years in connection with the designated property,
 to the extent known. | |
| b. A description of any litigation that has taken place within the past five years | |
| in connection with the designated property, to the extent known. | |

ITEM	COH Use
16. The name and address of each owner or operator of a water well registered or permitted by the state or the Houston-Galveston Subsidence District that is located within five miles of the boundary of the designated property, along with a map showing the location of each well and, to the extent known, a notation of whether each well is used for potable water. Well logs must be included in the electronic copy of the application, but should not be included in the hard copies. (An accompanying electronic excel file with mailing information should be included with your application.) Label "Appendix P"	
17. The name and address of each retail public utility, as defined in section 13.002 of the Texas Water Code, that owns or operates a groundwater supply well within five miles of the boundary of the designated property. Label "Appendix Q"	
18. A listing of each municipality, other than the city of Houston, with a corporate limit within one-half mile of the boundary of the designated property. Label "Appendix R"	
19. A listing of each municipality, other than the city of Houston, that owns or operates a groundwater supply well within five miles of the boundary of the designated property. Label "Appendix S"	
20. A listing of owners of real property within $2,500 \mathrm{ft}$. of the boundary of the designated property as indicated by the most recent appraisal district records. Please note: This requirement may include real property outside the City of Houston. Be sure to include ALL properties in the $2,500 \mathrm{ft}$. boundary. (An accompanying electronic excel file with mailing information should be included with your application.) Label "Appendix T"	
Form U-2012-01 signed and sealed by a licensed professional engineer or licensed professional geoscientist authorized to practice in the State of Texas with expertise in environmental remediation. (Form U-2012-01 can be found at www.houstonmsd.org under the "Forms" section on the homepage. Signing and sealing Form U-2012-01 certifies: a. The contaminants of concern from sources on the designated property or migrating from or through the designated property more likely than not [do exceed] OR [do not exceed] a non-ingestion protective concentration level on property beyond the boundaries of the designated property. (select the appropriate statement) b. All requirements of Section 47-762 of the Houston Code of Ordinances have been met, including demonstration that the groundwater contamination plume has been fully delineated and is stable or contracting in size Label "Appendix U"	

ITEM	COH Use
21. If the licensed professional engineer or licensed professional geoscientist determines that contaminants of concern from sources on the designated property are migrating from or through the designated property more likely than not do exceed a non-ingestion protective concentration level on property beyond the boundary of the designated property, then the applicant must: a. Specify the name and address of the owner of each property. b. Send a copy of the application to the owner of the property with the notice of the public meeting. c. Provide documentation that the designated property has been included in a state or federal program that requires that the entire non-ingestion protective concentration level exceedance zone be addressed to the satisfaction of the agency administering the program, along with documentation of the estimated time period in which it is to be addressed. An example of such a program is the Texas Voluntary Cleanup Program (section 361.501 of the Texas Health and Safety Code, as may be amended from time to time). d. Provide documentation upon completion of the state or federal program showing that the non-ingestion protective concentration level exceedances have been addressed to the satisfaction of the agency administering the program.	
22. Form W-2012-01 certified/signed by the applicant and any authorized representatives of the applicant(s) listed in the application. (Form W-2012-01 is attached to the end of this application and can also be found at www.houstonmsd.org under the "Forms" section on the homepage.) Label "Appendix W"	
23. Form X-2012-01 signed by the property owner or authorized agent (if an authorized agent, you must provide the legal authorization instrument). (Form X-2012-01 is attached to the end of this application and can also be found at www.houstonmsd.org under the "Forms" section on the homepage.) Label "Appendix X"	
24. A CD (or other devise) containing the pdf file of the application, Excel spreadsheet of water well owners and property owners for mailing notices, and the pdf file of the well \log report. Label "Appendix Y"	

EXECUTIVE SUMMARY

SQ Environmental, LLC (SQE) has prepared this revised Municipal Settings Designation (MSD) application on behalf of Hindsight Investments LLC, and 542 Allston Rental LP for the properties totaling 3.1271 acres located at 6525 Goforth Street (St), 6505 Foster St, and 0 Foster St in Houston, Harris County, Texas along with the surrounding City of Houston right-of-ways (subject property). For the purposes of this report "subject property" and "designated property" are synonymous and refer collectively to the three aforementioned real property addresses. Additionally, when describing the subject property, the "western tract" refers to the property located at 6525 Goforth St and "eastern tract" refers to the properties located at 6505 Foster St and 0 Foster St. The property layout is provided below:

The properties outlined in yellow are the three parcels owned by Hindsight Investments LLC, and 542 Allston Rental LP and represent the property that is in the Texas Commission on Environmental Quality (TCEQ) Voluntary Cleanup Program (VCP) which totals 1.7850 acres. The teal outline shows the designated property for the MSD and includes the adjacent City of Houston right-of-ways and totals 3.1271 acres.

The designated property is located approximately 1.6 miles east of the intersection of Interstate 610 (I-610) and Highway (Hwy) 288, and is approximately 1.2 miles south of Brays Bayou, which generally runs east-west. The designated property is located within the Greater Old Spanish Trail South Union neighborhood, approximately 4.5 miles south of downtown Houston. As shown on Figure B. 1 of Appendix B, the surrounding properties to the north, south, and west are primarily residential. Commercial operations are present adjacent east and to the northeast and northwest.

No municipalities, other than the City of Houston, have corporate limits within one-half mile of the boundary of the designated property. Public drinking water is currently available to the properties located within one-half
mile radius surrounding the designated property by the City of Houston public water supply system. No domestic or commercial water wells were identified within 500 -feet of the designated property.

As mentioned, the privately-owned portions of the designated property are currently participating in the TCEQ VCP and have been assigned VCP ID No. 3207. The property was accepted into the VCP on 24 February 2022 after identification of chlorinated solvent constituents in soil and groundwater, and to a lesser extent petroleum related compounds, associated with historical operations.

An MSD application package regarding the subject property was originally submitted to the City of Houston on 24 March 2023 and was assigned MSD Application No 2023-166-GSP. In a letter dated 18 January 2024, the City of Houston deemed MSD Application No 2023-166-GSP "administratively complete, containing all required information." The MSD application was reviewed for technical program compliance, and a revised MSD Application package was requested by the COH in an email dated 8 March 2024. The report documented herein addresses the requests made by the City of Houston.

Background and Purpose

Elevated levels of the following chlorinated solvent constituents have been found in the soil and groundwater beneath the subject property:

- Surface soil (<15 feet below ground surface [ft bgs]) - Trichloroethene (TCE) and its degradation products (cis-1,2-dichloroethene [cis-1,2-DCE] and vinyl chloride [VC]);
- Subsurface soil (>15 ft bgs) - TCE, cis-1,2-DCE, VC and 1,1-dichloroethene (1,1-DCE); and
- Groundwater - TCE, cis-1,2-DCE, VC, 1,1-DCE, tetrachloroethene (PCE), 1,1,2-trichloroethane ($1,1,2$-TCA), toluene and the total petroleum hydrocarbon (TPH) carbon chain C6 through C12.

As is discussed below, the majority of the contamination beneath the subject property appears to have originated from a historical machine shop or similar historical activities on the adjacent east off-site property. Contribution by the subject property has not been ruled out, but based on the available information, any such contribution appears to be minor in comparison to the impacts from the off-site property.

Potential exposure pathways for soil that were considered were ingestion of the soil (${ }^{\text {GW }}$ Soil ${ }^{\text {ngg }}$), direct contact with the soil (${ }^{\text {TotSoilcomb), and inhalation of vapors from the soil (AirSoilnn-v). Potential exposure pathways for }}$ groundwater that were considered were ingestion of the groundwater (${ }^{\mathrm{GW}} \mathrm{GW}_{\mathrm{Ing}}$), and inhalation of vapors from the groundwater (AirGW ${ }_{\text {Inh-v }}$) assuming a 30 -acre source area.
Upon approval of this revised MSD application by the City of Houston and certification by the TCEQ, the chlorinated solvent constituents that exceed the protective concentration levels (PCLs) in surface, and subsurface soil are: TCE and cis-1,2-DCE, and TCE, respectively. However, all surface and subsurface soil PCL exceedances with chemicals potentially originating from the subject property are confined to the designated property once the MSD is in place. The chlorinated solvent constituents that exceed the PCLs in groundwater are TCE and VC. However, the only chemical of concern (COC) that extends off of the designated property is TCE which is the locus of this MSD application.

The results of the testing that has been performed indicate that TCE has been released from two locations; one primary release which appears to have originated on the property to the east of the subject property and to a lesser extent, one on the subject property from the historical operation of the vapor degreaser. The property to the east of the subject property is identified in historical records as a machine shop and a manufacturer of industrial and commercial machinery and equipment. Based on available records, activities
on this adjacent property with potential to have released chlorinated solvents began around 1980 and appear to have ended as late as 2017.

A TCE vapor degreaser, associated with the former tenant Pipe Seal and Insulators (PSI), Inc. located on the subject property (at 6525 Goforth St), was identified on the western tract from the 1960 s through at least 2017. Based on available records, operation of the vapor degreaser on the subject property appears to have ended when the former tenant vacated the 6525 Goforth St tenant space in 2017. While it does appear that there has been some release from the historical vapor degreaser, based on soil samples around and beneath the degreaser, releases appear to be fairly minor.
Based on the sampling completed to date, two groundwater bearing units (GWBU) have been identified beneath the subject property. An upper GWBU (i.e., shallow groundwater) affected with TCE, appears to be migrating onto the property from the east. A lower GWBU (i.e., deeper groundwater) affected with TCE appears to be migrating off of the property to the west. While there are impacts to the shallow groundwater from the eastern property boundary, and deeper groundwater beneath the subject property and off-site to the west, it is unclear with the current information whether this is one plume originating from the off-site eastern property, and migrating into deeper GWBU's, or whether there are contributions from on-site sources. Based on the data collected from offsite monitoring well MW-09, TCE in groundwater does appear to extend offsite beneath portions of one residential property in excess of the critical PCLs.
The areal extent of the affected groundwater beneath the subject property is shown on Figure C. 4 of Appendix C and is portrayed as one continuous plume. The groundwater gradient of the upper and lower GWBU's, as well as direction of groundwater flow from northeast to southwest are shown on Figure C. 5 of Appendix C.

The purpose of the MSD is to restrict use of the affected groundwater within the designated property as well as offsite parcels within the affected groundwater zones. This will allow closure through the TCEQ VCP and beneficial reuse of the subject property.
Figure C. 1 of Appendix C illustrates the location of the designated property.

Summary of Current Conditions

SQE collected 33 total soil samples (12 surface and 21 subsurface) from the subject property as part of the designated property investigation activities. Eight soil borings were converted to permanent monitoring wells on the designated property (monitoring wells MW-01, MW-02, MW-03, MW-04, MW-05, MW-06, MW-10, and MW-11). One offsite soil boring, located upgradient of the TCE plume, was converted to a permanent groundwater monitoring well (MW-07R) and two offsite soil borings, located downgradient of the TCE plume, were converted to permanent monitoring wells (MW-08 and MW-09). Periodic sampling from the groundwater monitoring well network has occurred from September 2021 through March 2024. Based on field groundwater elevation measurements, there appear to be two GWBU's beneath the designated property. TCE affected groundwater is present both in the upper GWBU and the lower GWBU on the eastern (upgradient) property boundary. Groundwater appears to be migrating beneath the subject property and off-site to the west in the lower GWBU.

Tables C. 1 in Appendix C provides cumulative groundwater analytical data, Figure C-4 of Appendix C shows the extent of the TCE in groundwater, and Figure C. 5 of Appendix C illustrates the direction of groundwater flow beneath the designated property. Since sampling began in 2021, the direction of groundwater flow of the upper GWBU has been roughly northeast to southwest. Similarly, the direction of groundwater flow of the lower GWBU has been approximately west to southwest. Tables E. 4 and Table E. 5 provide the surface and subsurface soil analytical results, respectively, and Figures E. 1 and E. 2 illustrate the extent of the chlorinated solvent constituents in surface and subsurface soil, respectively.

This page intentionally left blank.

APPENDIX A

Provide a legal description of the boundaries of the designated property, including metes and bounds, and a copy of the deed for the property. A professional surveyor currently registered with the Texas Board of Professional Surveying must certify that all property descriptions with metes and bounds are accurate.

A deed for the three parcels is included in Appendix A along with a survey which is dated 15 August 2021, and includes both a plat map and metes and bounds for the three parcels. A figure showing the approximate boundaries of the 3.1271-acre designated property for the MSD is also included. The metes and bounds for the 3.1271 -acre designated property was completed on 14 March 2023 and is sealed by Daniel Villa, Jr, a Texas-registered Professional Land Surveyor.

NOTICE OF CONFIDENTLALITY RIGHTS: TF YOU ARE A NATURAL PERSON, YOU MAY REMOVE OR STRIKE ANY OR ALL OF THE FOLLOWING INFORMATION FROM ANY INSTRUMENT THAT TRANSFERS AN INTEREST IN REAL PROPERTY BEFORE IT IS FILED FOR RECORD IN THE PUBLIC RECORDS: YOUR SOCIAL SECURITY NUMBER OR YOUR DRIVER'S LICENSE NUMBER.

Warranty Deed with Vendor's Lien

Date: February 1, 2022
Grantor: \quad DPDD, LLC, a Texas limited liability company
Grantor's Mailing Address:
2188 SPICER COUE MEMPHIS, TN. 38134

Grantee: Hindsight Investments, LLC, as to an undivided 40% interest; 4-6-6-4 Challenger, LLC, as to an undivided 20% interest; and 542 Allston Rental, LP, as to an undivided 40% interest

Grantee's Mailing Address:

> Hindsight Investments, LLC
> 1022 Shorewood Drive
> Seabrook, Texas 77586
> 4-6-6-4 Challenger, LLC
> 80 Stone Hinge Drive
> Fairview, Texas 75069
> 542 Allston Rental, LP
> P.O. Box 70846
> Houston, Texas 77270

Consideration:

Cash of $\$ 10.00$ and a note executed by Grantee and payable to the order of Jeannette Holliday, Trustee, or her successors in trust, of The Jeannette Holliday Family Trust in the principal amount of ONE MILLION TWO HUNDRED NINETY THOUSAND AND NO/ 100 DOLLARS $(\$ 1,290,000.00)$. The note is secured by a first and superior vendor's lien and superior title retained in this deed in favor of Jeannette Holliday, Trustee, or her successors in trust, of The Jeannette Holliday Family Trust and by a first-lien deed of trust from Grantee to Rodney Hubbard, trustee.
Fage 1 of 4
GF No. FAH21011336 BY

Page 1 of 4
GF No. FAH21011336
fidelity national title

Property (including any improvements):

TRACT I

Being all of unrestricted reserve "A" - Block 1 of PSI, Inc. an Subdivision in Harris County, Texas, recorded under Film Code No. 457078, Harris County Map Records.

TRACT II

Being Lots 12, 13 \& 14, Block 33, Belmont Addition Number Two, an Subdivision in Harris County, Texas, recorded under Volume 572, Page 437, Harris County Deed Records of Harris County, Texas.

TRACT III

Being a 0.9899 acre tract of land consisting of all of Lots $3,4,5,6,12,13 \& 14$, and being a portion of Lots 11, Block 34 of Belmont Addition Number Two, an Subdivision in Harris County, Texas, recorded under Volume 572, Page 437, Harris County Deed Records of Harris County, Texas, and Lot 1, Block 6, of the Replat of Foster Place Addition, Blocks 1-8, recorded under Volume 725, Page 229, of the Harris County Deed Records.

Beginning at a $5 / 8$-inch iron rod with cap set, in the westerly right-of-way line of Foster Street (55.50^{\prime} wide) marking the northeasterly corner of said Lot 3, Block 34, said rod also marking the northeasterly corner of the herein described tract of land;

Thence - South $17^{\circ} 45^{\prime} 26^{\prime \prime}$ West, along the westerly right-of-way line of said Foster St. for a distance of 200.00 feet to a $1^{\prime \prime}$ iron pipe found, marking the southeasterly corner of said Lot 6 , Block 34, and the northeasterly corner of Lot 4, Block 6 of said Foster Place, said pipe also marking the southeasterly corner of the herein described tract of land;

Thence - North $72^{\circ} 14^{\prime} 34^{\prime \prime}$ West, along the north line of said Foster Place, Block 6, for a distance of 100.00 feet, to a $5 / 8$-inch iron rod with cap set marking the northwesterly corner of Lot 3 of said Foster Place, said rod also marking an angle point in the herein described tract;

Thence - North $17^{\circ} 45^{\prime} 26^{\prime \prime}$ East, along the common Lot lines of Lots 11 and 6, Block 34 of said Belmont - Sec. 2, for a distance of 28.20 feet to a $5 / 8$-inch iron rod with cap set, marking an interior comer of the herein described tract;

Thence - North $72^{\circ} 28^{\prime} 40^{\prime \prime}$ West, over and across said Lot 11 , for a distance of 50.00 feet to a $5 / 8$ inch iron rod with cap set, marking an interior corner of the herein described tract;

Thence - South $17^{\circ} 45^{\prime} 26^{\prime \prime}$ West, for a distance of 118.56 feet (called 120.00 feet) to a $5 / 8$-inch iron rod found in the Northeasterly right-of-way line of Hull Street (60° wide), marking the southwesterly comer of Lot 2, Block 6 of said Foster Place, said rod also marking the Southeasterly comer of said Lot 6 and the herein described tract;

Page 2 of 4
 GF No. FAH21011336

Thence - North $72^{\circ} 14^{\prime} 34^{\prime \prime}$ West, along the Northeasterly right-of-way line of said Hull Street, for a distance of 50.00 feet to a point, at the intersection of said Hull Street and the Easterly line of Goforth Street (55.5^{\prime} wide), at said point a $5 / 8$-inch iron rod found bears $S 07^{\circ} 31^{\prime} \mathrm{E}-0.52^{\prime}$ from the southwesterly corner of the herein described tract;

Thence - North $17^{\circ} 45^{\prime} 26^{\prime \prime}$ East, along the easterly line of said Goforth Street for a distance of 290.57 feet (called 292.21 feet) to a $5 / 8$-inch iron rod with cap set, marking the Northwesterly corner of Lot 14 and the herein described tract;

Thence - South $72^{\circ} 45^{\prime} 26^{\prime \prime}$ East, at a distance of 2.25^{\prime} passing a $5 / 8$-inch iron rod with cap set marking the southwesterly comer of Unrestricted Reserve "A" of PSI, Inc. Subdivision, recorded under Film Code Number 457078, H.C.M.R., continuing for a total distance of 200.00 feet to the Point of Beginning of the herein described tract consisting of $43,124 \mathrm{sq}$. ft .10 .9899 ac .

Reservations from Conveyance: None

Exceptions to Conveyance and Warranty:

All valid easements, restrictions, covenants, mineral reservations and maintenance fund liens, if any, applicable to the above described property as shown by the records of the county clerk of the county in which said real property is located; taxes for the current year, the payment of which Grantee assumes; and all zoning laws, regulations and ordinances of municipal and other govermmental authority, if any, affecting the property.

Grantor, for the Consideration and subject to the Reservations from Conveyance and the Exceptions to Conveyance and Warranty, grants, sells, and conveys to Grantee the Property, together with all and singular the rights and appurtenances thereto in any way belonging, to have and to hold it to Grantee and Grantee's heirs, successors, and assigns forever. Grantor binds Grantor and Grantor's heirs and successors to warrant and forever defend all and singular the Property to Grantee and Grantee's heirs, successors, and assigns against every person whomsoever lawfully claiming or to claim the same or any part thereof, except as to the Reservations from Conveyance and the Exceptions to Conveyance and Warranty.

The vendor's lien against and superior title to the Property are retained until each note described is fully paid according to its terms, at which time this deed will become absolute.

Jeannette Holliday, Trustee, or her successors in trust, of The Jeannette Holliday Family Trust, at Grantee's request, has paid in cash to Grantor that portion of the purchase price of the Property that is evidenced by the note. The first and superior vendor's lien against and superior title to the Property are retained for the benefit of Jeannette Holliday, Trustee, or her successors in trust, of The Jeannette Holliday Family Trust and are transferred to Jeannette Holliday, Trustee, or her successors in trust, of The Jeannette Holliday Family Trust without recourse against Grantor.

When the context requires, singular nouns and pronouns include the plural.

Page 3 of 4
GF No. FAH21011336

Warranty Deed with Vendor's Lien

STATE OF TEXAS FAlandx) county or A (kelley,
 Texas limited liability company, on its behalf and for the purposes stated herein.

AFTER RECORDING RETURN TO:
Hindsight Investments, LLC 1022 Shorewood Drive Seabrook, Texas 77586

Page 4 of 4
GF No. FAH21011336

```
RP-2022-76768
# Pages 5
02/11/2022 10:30 AM
e-Filed & e-Recorded in the
Official Public Records of
HARRIS COUNTY
TENESHIA HUDSPETH
COUNTY CLERK
Fees $30.00
```

RECORDERS MEMORANDUM
This instrument was received and recorded electronically and any blackouts, additions or changes were present at the time the instrument was filed and recorded.

\square Designated Property Boundary (approximate)
VCP 3207 Property Boundary (approximate)

MSD METES AND BOUNDS 3.1271 ACRES

Being an area containing 3.1271 acres (136,215 square feet) of land, more or less, and being comprised of:

- all of Unrestricted Reserve "A", Block 1, of PSI Inc. as recorded under Film Code 457078, Harris County Map Records,
- Lots 12, 13, and 14, Block 33, Belmont Addition Number Two, as recorded under Volume 572, Page 437, Harris County Deed Records,
- a called 0.9899 acre tract of land consisting of all of Lots $3,4,5,6,12,13 \& 14$, and a portion of Lot 11, Block 34 of Belmont Addition Number Two, as recorded under Volume 572, Page 437, Harris County Deed Records,
- Lot 1, Block 6 of the replat of Foster Place Addition, Blocks 1-8 as recorded in Volume 725, Page 229, Harris County Deed Records,
- a portion of Balkin Avenue (called 48.8 feet wide) between Goforth Street and Foster Street (called 55.5 feet wide),
- a portion of Foster Street from Balkin Avenue to a point northerly of Hull Street,
- A portion of Hull Street (60 feet wide) from Goforth Street to a point easterly of Goforth Street,
- and a portion of Goforth Street (called 55.5 feet wide) from Hull Street to Balkin Avenue, said 3.1271 acre area being described more particularly by metes and bounds as follows:

BEGINNING at a point marking the intersection of the north right-of-way of Balkin Avenue (called 48.8 feet wide) and the west right-of-way of Goforth Street;

THENCE S 72 degrees 14 minutes 34 seconds E , a distance of 311.00 feet along the northerly right-of-way of Balkin Avenue to a point marking the intersection of the north right-of-way of Balkin Avenue and the east right-of-way of Foster Street;

THENCE S 17 degrees 45 minutes 26 seconds W a distance of 148.80 feet along the east right-of-way of Foster Street to a point marking the intersection of the east right-of-way of Foster Street and the north line of Lot 14, Block 33 of Belmont Number Two;

THENCE S 72 degrees 14 minutes 34 seconds E a distance of 100.00 feet along the north line of Lot 14, Block 33, Belmont Number Two to a point marking the northeast corner of said Lot 14;

THENCE S 17 degrees 45 minutes 26 seconds W a distance of 150.00 feet along the east line of Lots 12,13, and 14, Block 33, Belmont Number Two to a point marking the southeast corner of said Lot 12;

THENCE N 72 degrees 14 minutes 34 seconds W a distance of 100.00 feet along the south line of Lot 12, Block 33, Belmont Number Two, to a point marking the intersection of the south line of said Lot 12 and the east right-of-way line of Foster Street;

THENCE S 17 degrees 45 minutes 26 seconds W a distance of 44.40 feet along the east right-of-way of Foster Street to a point:

THENCE N 72 degrees 14 minutes 34 seconds W a distance of 155.60 feet to a point marking the southwest corner of Lot 6, Block 34, Belmont Number Two;

THENCE N 17 degrees 45 minutes 26 seconds E a distance of 28.20 feet along the common line of Lots 6 and 11, Block 34, Belmont Number Two to a point on said common line;

THENCE N 72 degrees 28 minutes 40 seconds W a distance of 50.00 feet to a point for corner;
THENCE S 17 degrees 45 minutes 26 seconds W a distance of 178.56 feet to a point on the north right-of-way of Hull Street;

THENCE N 72 degrees 14 minutes 34 seconds W a distance of 105.50 feet along the north right-of-way of Hull Street to a point marking the intersection of the north right-of-way of Hull Street and the west right-of-way of Goforth Street to a point;

THENCE N 17 degrees 45 minutes 26 seconds E a distance of 493.76 feet along the west right-of-way of Goforth Street to the POINT OF BEGINNING of the herein described area containing 3.1271 acres (136,215 square feet) of land, more or less.

NOTES:

1. Bearings shown on this metes and bounds description are referenced to a boundary survey prepared by Prime Texas Surveys dated August 15, 2021.

This page intentionally left blank.

APPENDIX B

A description of the current use and, to the extent known, the anticipated use(s) of the designated property and properties within 500 feet of the boundary of the designated property.

The subject property is located approximately 4.5 miles south of downtown Houston, Harris County, Texas, and is within the City of Houston limits. The property at 6525 Goforth Street consists of four warehouse buildings that are leased. Current operations include a dance company, mattress refurbish company and bulk storage of palletized goods. The property at 6505 and 0 Foster Street consists of one warehouse building that is leased. Current operations include car restoration activities. No bulk chemicals of concern are currently used or stored on site. Overall the current use of the subject property is commercial/industrial. The anticipated future use of the subject property is likely commercial however, potential residential use is being considered.

Surrounding properties to the north, south, and west, within 500 -feet of the subject property, are primarily residential. Commercial operations are present adjacent east and to the northeast and northwest. The land use of the parcels within a 500-foot radius of the designated property are depicted on Figure B. 1 of this appendix.

The subject property was entered into the Texas Commission on Environmental Quality (TCEQ) Voluntary Cleanup Program (VCP) in February 2022 and assigned VCP No. 3207.

This page intentionally left blank.

APPENDIX C

A site map showing.

a. The location of the designated property.
b. The topography of the designated property as indicated on publicly available sources, which must note the watershed including the nearest surface water body and whether the designated property is located in a floodplain or floodway, as those terms are defined in Chapter 19 of the Code of Ordinances.
c. The detected area of groundwater contamination.
d. The location of all soil sampling locations and all groundwater monitoring wells.
e. Groundwater gradients, to the extent known, and direction of groundwater flow.
f. The ingestion protective concentration level exceedance zone for each contaminant of concern, to the extent known.
g. Depth to groundwater for each affected zone
As shown on Figure C.1, the topography of the subject property is generally flat and situated at an elevation of approximately 40 feet above mean sea level (ft amsl). As shown on Figure C .2 , the subject property is located within the Brays Bayou watershed. As indicated on Figure C.3, the subject property is located approximately 1.2-miles south of Brays Bayou and is outside the Brays Bayou 100 and 500-year floodplains.

The locations sampled by SQE including soil borings and permanent groundwater monitoring wells are depicted on Figure C.4. Since the submission of the original MSD Application, one additional permanent monitoring well, MW-11, was installed.

As depicted on Figure C.5, two groundwater bearing units (GWBU) have been identified beneath and near the subject property. The upper GWBU and associated monitoring wells are shown as blue well symbols on this figure, and the lower GWBU and associated monitoring wells are shown as red well symbols. As shown on Figure C.5, the upper and lower potentiometric surfaces are generally towards the southwest to west, respectively. The potentiometric surfaces shown on Figure C. 5 is based on groundwater elevation measurements collected on 7 March 2024. However, it should be noted that groundwater elevation measurements collected from 2021 through present reflect similar groundwater flow directions.

The "protective concentrations level exceedance zone" (PCLE zone) is based on the most recent groundwater data which is summarized in Table C. 1 and shown on Figures C. 4 and C.6. Table C. 1 presents a summary of the groundwater analytical data for the wells installed as part of the TCEQ VCP project and were used to develop the PCLE zone shown on Figure C.4. The TCE in groundwater, labeled as "Groundwater PCLE with MSD" on Figures C. 4 and C.6, appears to originate from an offsite source east of the designated property and extends offsite towards the residential parcel located west of monitoring well MW-09. Although it appears that there may have been a contribution of TCE from a vapor degreaser that was previously present on the designated property, based on the sampling that has been performed, it appears that the majority of the TCE found beneath the subject property originated from historical industrial activities on the property just to the east (upgradient). The property to the east of the subject property is identified in historical records as a machine shop and a manufacturer of industrial and commercial machinery and equipment. Activities on this adjacent property with potential to have released chlorinated solvents began around 1980 and appear to have ended as late as 2017. Based on the current information the groundwater PCLE zone is portrayed as one continuous plume on Figures C. 4 and C.6. The concentration of TCE reported from the monitoring wells within the TCE
plume, exceed the PCL with an MSD in place of 3.1 milligrams per liter (mg / L) assuming a 30 -acre source area and the AirGWinh-v exposure pathway.

The depth to groundwater of the upper GWBU at the subject property is between approximately 15 and 25 feet below the top of casing (ft btoc). The depth to groundwater of the lower GWBU at the subject property is between approximately 25 and 28 ft btoc. Shallow soils beneath the designated property are generally clay, which in some areas (including beneath the former vapor degreaser) extend to depths of over 40 ft . The uppermost saturated zone beneath this clay consists of fine-grained sand ranging from approximately 0.5 to 8 feet thick. The upper GWBU is underlain by a layer of clay which separates the upper GWBU from the lower GWBU. Underneath this clay is a lower GWBU which consists of fine-grained sand ranging from approximately 8 to 25 feet thick. Underneath the lower GWBU is a clay confining layer.

The components of Appendix C are detailed below.
Appendix C Attachments

- Table C. 1 Summary of Groundwater Analytical Results
- Figure C. 1 Property Location Map
- Figure C. 2 Watershed Map
- Figure C. 3 Floodplain Map
- Figure C. 4 Sample Location and Affected Groundwater Area Map
- Figure C. 5 Groundwater Gradient Map March 2024
- Figure C. 6 Groundwater TCE Concentration PCLE Map

					II 11	II II	111	115	\bigcirc	\bigcirc	D	\bigcirc	O		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc		\bigcirc	8
					II 11	II 11	II 11	"1		옹	운				$\underset{\sim}{\prime}$			O				O	\bigcirc	
				\#	II II	II II	II		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\rightarrow	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	
					II 11	II 11	"					$\stackrel{\rightharpoonup}{2}$			$\underset{\sim}{\sim} \underset{O}{2} 8$		$\begin{gathered} 0 \\ \hline \mathbf{O} \\ \mathbf{0} \\ \mathbf{v} \end{gathered}$	-	$\stackrel{y}{4}$			Sun		-
					\bigcirc	\bigcirc			\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\rightarrow	\bigcirc				\bigcirc	-	\bigcirc
							$\stackrel{\stackrel{1}{0}}{0}$							\bigcirc				O	So	$\stackrel{\sim}{\circ}$	$\underset{\substack{\infty \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline}}{ }$	5	$\begin{aligned} & \circ \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	O
									\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc
				II	\#1 11	it	"		$\stackrel{0}{2}$	응				0	$\stackrel{C}{0} \stackrel{\infty}{-\infty} \stackrel{N}{-}$			O	$\begin{gathered} 00 \\ \hline 0 \\ 0 \\ 0 \end{gathered}$			융		O
									\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc
				II	It 11	II II	II			$\stackrel{\rightharpoonup}{\circ}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ \stackrel{\rightharpoonup}{0} \\ \hline \mathbf{O} \\ \hline 0 \end{gathered}$			So				V				$\underset{N}{2}$		-
									$\bigcirc \bigcirc$	$\rightarrow 5$	\bigcirc		,			\bigcirc		,				,	\bigcirc	\rightarrow
				II	II 11	II 11	II			능		0	Soco			O	O	${ }^{\circ}$	Sic	\ldots	0	$\hat{\mathbf{o}}$		
				\#1	"11	"11	II		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\rightarrow	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc	\bigcirc
				II	"	II II	II		$\stackrel{c}{0}$	$\stackrel{8}{\circ}$		\bigcirc		3	\bigcirc	$\therefore \stackrel{0}{0}$		$\stackrel{\sim}{\square}$		Σ	$\stackrel{8}{6}$	0		
					\bigcirc	\bigcirc			\bigcirc	\bigcirc	\bigcirc		\supset			\supset	\supset		\bigcirc			\bigcirc	\bigcirc	\bigcirc
				\bigcirc		Oim	-				$\begin{gathered} \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{2} \\ \hline 0.0 \\ \vdots \\ \hline \end{gathered}$	$\stackrel{\infty}{\circ}$	\bigcirc	꾼	¢in	$=\begin{gathered} i n \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$			$\begin{gathered} n \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	\&	$\stackrel{\sim}{\infty}$	$\stackrel{\sim}{\square}$		
										\bigcirc	\bigcirc		\bigcirc			\bigcirc	\bigcirc		5			\bigcirc	\bigcirc	\bigcirc
				II	It	it 11	II		O-	$\stackrel{\rightharpoonup}{O_{0}} \stackrel{\rightharpoonup}{0}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$	O			へo		$\stackrel{c}{0}$		-			-		O
									\bigcirc	\bigcirc	\bigcirc		\bigcirc		,	\rightarrow	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc	\bigcirc
				\#1	II	It 11	11					号					So							
				O	응ㅇㅇㅇ	응			8	~	-	-	-	¢		-	-		응	-		8		
				\bigcirc	-	${ }_{\circ}^{\infty}$			N	O-			+	O응	80	0	O		O		은	응	응	은

[^0]
SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTS

[^1]TABLE C. 1
SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTS

[^2]

[^3]

[^4]

[^5]This page intentionally left blank.

APPENDIX D

Provide for each contaminant of concern within the designated groundwater:
a. A description of the ingestion protective concentration level exceedance zone and the non-ingestion protective concentration level exceedance zone, including a specification of the horizontal area and the minimum and maximum depth below ground surface.
b. The level of contamination, the ingestion protective concentration level, and the noningestion protective concentration level, all expressed as mg/L units.
c. Its basic geochemical properties (e.g., whether the contaminant of concern migrates with groundwater, floats or is soluble in water).

Based on a cumulative evaluation of the groundwater analytical data, COCs that have exceeded the TCEQ ingestion Tier 1 Residential PCLs (${ }^{6 W}$ GWing) are TCE and its degradation products (cis-1,2-DCE and VC) as well as 1,1-DCE, PCE, 1,1,2-TCA, toluene, and TPH (carbon chains C6 through C12). However, as stated, the only COC that exceeds the Residential PCLs (non-ingestion Air GW inn-v) once an MSD is in place are TCE (onsite and offsite) and VC (onsite). The chemical concentrations of TCE in soil and groundwater are generally decreasing from east to west.

Based on cumulative groundwater sample results, the following COCs were present in the groundwater samples from one or more monitoring wells located on the designated property. As stated, concentrations of TCE and VC have been reported above groundwater ingestion and non-ingestion and concentrations of cis-1,2-DCE, 1,1-DCE, PCE, 1,1,2-TCA, toluene, and TPH have been reported above groundwater ingestion and below non-ingestion pathways.

Trichloroethene (TCE)	
Concentration Range	<0.00020 to $290 \mathrm{mg} / \mathrm{L}$
Ingestion-Based PCL (Residential ${ }^{\text {GW }} \mathrm{GW}^{\text {Ing }}$)	$0.005 \mathrm{mg} / \mathrm{L}$
Ingestion-Based PCLE Zone Area (Approximate)	See Figure C. 6
Non-Ingestion-Based PCL (30 -acre ${ }^{\text {Air }}$ GW ${ }_{\text {Inn-v }}$)	3.1 mg/L
Non-Ingestion-Based PCLE Zone	See Figure C. 6
Molecular Weight	131.4
Specific Gravity	1.46
Solubility in Water	1,100 mg/L
Movement in Groundwater	Relatively low solubility in water. As a free phase is heavier than water and will sink. Dissolved chemical will move with the groundwater. (Note that TCE has not been found as a free-phase at the designated property.)
Vinyl Chloride (VC)	
Concentration Range	<0.00020 to $8.7 \mathrm{mg} / \mathrm{L}$
Ingestion-Based PCL (Residential ${ }^{\text {GW }} \mathrm{GW}^{\text {Ing }}$)	$0.002 \mathrm{mg} / \mathrm{L}$
Ingestion-Based PCLE Zone Area (Approximate)	See Figure C. 6
Non-Ingestion-Based PCL (30 -acre ${ }^{\text {Air }}$ GW ${ }_{\text {Inn-v }}$)	$0.49 \mathrm{mg} / \mathrm{L}$
Non-Ingestion-Based PCLE Zone	See Figure C. 6
Molecular Weight	62.5
Specific Gravity	0.91
Solubility in Water	2,760 mg/L

Movement in Groundwater	Gas at ambient temperatures and pressures. Generated from the degradation of some chlorinated organics (like PCE and TCE). Off gasses from groundwater.
1,1-Dichloroethene (1,1-DCE)	
Concentration Range	<0.00020 to $11 \mathrm{mg} / \mathrm{L}$
Ingestion-Based PCL (Residential ${ }^{\text {GW }} \mathrm{GW}^{\text {Ing }}$)	$0.007 \mathrm{mg} / \mathrm{L}$
Ingestion-Based PCLE Zone Area (Approximate)	See Figure C. 6
Non-Ingestion-Based PCL (0.5-acre ${ }^{\text {Air }}$ GW ${ }_{\text {Inn-v }}$)	$220 \mathrm{mg} / \mathrm{L}$
Non-Ingestion-Based PCLE Zone	None
Molecular Weight	$96.9 \mathrm{~g} / \mathrm{mol}$
Specific Gravity	1.17
Solubility in Water	2,400 mg/L
Movement in Groundwater	Generally present in the dissolved phase and moves with the groundwater.
cis-1,2-Dichloroethene (cis-1,2-DCE)	
Concentration Range	<0.00020 to $32 \mathrm{mg} / \mathrm{L}$
Ingestion-Based PCL (Residential ${ }^{\text {GW }}$ GW ${ }_{\text {Ing }}$)	$0.07 \mathrm{mg} / \mathrm{L}$
Ingestion-Based PCLE Zone Area (Approximate)	See Figure C. 6
Non-Ingestion-Based PCL ($30-\mathrm{acre}$ AirGW ${ }_{\text {Inh-v }}$)	$160 \mathrm{mg} / \mathrm{L}$
Non-Ingestion-Based PCLE Zone	None
Molecular Weight	$96.9 \mathrm{~g} / \mathrm{mol}$
Specific Gravity	1.27
Solubility in Water	4,930 mg/L
Movement in Groundwater	Generally present in the dissolved phase and moves with the groundwater.
1,1,2-trichloroethane (1,1,2-TCA)	
Concentration Range	<0.0030 to $0.013 \mathrm{mg} / \mathrm{L}$
Ingestion-Based PCL (Residential ${ }^{\text {GW }} \mathrm{GW}^{\text {Ing }}$)	$0.005 \mathrm{mg} / \mathrm{L}$
Ingestion-Based PCLE Zone Area (Approximate)	See Figure C. 6
Non-Ingestion-Based PCL (0.5-acre ${ }^{\text {Air }}$ GW ${ }_{\text {Inn-v }}$)	$10 \mathrm{mg} / \mathrm{L}$
Non-Ingestion-Based PCLE Zone	None
Molecular Weight	$133.4 \mathrm{~g} / \mathrm{mol}$
Specific Gravity	1.44
Solubility in Water	$2,930 \mathrm{mg} / \mathrm{L}$
Movement in Groundwater	Generally present in the dissolved phase and moves with the groundwater.
Tetrachloroethene (PCE)	
Concentration Range	<0.0030 to $0.0062 \mathrm{mg} / \mathrm{L}$
Ingestion-Based PCL (Residential ${ }^{\text {GW }}$ GW ${ }_{\text {Ing }}$)	$0.005 \mathrm{mg} / \mathrm{L}$
Ingestion-Based PCLE Zone Area (Approximate)	See Figure C. 6
Non-Ingestion-Based PCL (0.5-acre ${ }^{\text {Air }}$ GW ${ }_{\text {Inn-v }}$)	$64 \mathrm{mg} / \mathrm{L}$
Non-Ingestion-Based PCLE Zone	None
Molecular Weight	$165.8 \mathrm{~g} / \mathrm{mol}$
Specific Gravity	1.62
Solubility in Water	$150 \mathrm{mg} / \mathrm{L}$

Movement in Groundwater	Low solubility in groundwater. Dissolved chemical will move with the groundwater.
Toluene	
Concentration Range	<0.0020 to $1.8 \mathrm{mg} / \mathrm{L}$
Ingestion-Based PCL (Residential ${ }^{\text {GW }} \mathrm{GW}_{\text {Ing }}$)	$1.0 \mathrm{mg} / \mathrm{L}$
Ingestion-Based PCLE Zone Area (Approximate)	See Figure C. 6
Non-Ingestion-Based PCL (0.5-acre AirGW ${ }_{\text {Inh-v }}$)	8,200 mg/L
Non-Ingestion-Based PCLE Zone	None
Molecular Weight	$92.14 \mathrm{~g} / \mathrm{mol}$
Specific Gravity	0.87
Solubility in Water	$526 \mathrm{mg} / \mathrm{L}$
Movement in Groundwater	Relatively low solubility in water. Floats as a freephase. Moves with groundwater as a dissolved phase.
TPH (C6-C12)	
Concentration Range	<0.16 to $55 \mathrm{mg} / \mathrm{L}$
Ingestion-Based PCL (Residential ${ }^{\text {GW }} \mathrm{GW}_{\text {Ing }}$)	$0.98 \mathrm{mg} / \mathrm{L}$
Ingestion-Based PCLE Zone Area (Approximate)	See Figure C. 6
Non-Ingestion-Based PCL (0.5-acre ${ }^{\text {AirGW }}$ Inh-v)	$230 \mathrm{mg} / \mathrm{L}$
Non-Ingestion-Based PCLE Zone	None
Molecular Weight	Varies
Specific Gravity	Varies
Solubility in Water	
Movement in Groundwater	Relatively low solubility in water. Floats as a freephase. Moves with groundwater as a dissolved phase.

This page intentionally left blank.

APPENDIX E

A table displaying the following information for each contaminant of concern, to the extent known:
a. The maximum concentration level for soil and groundwater, the ingestion protective concentration level, and the non-ingestion protective concentration level, all expressed as $\mathrm{mg} / \mathrm{kg}$ for soils and mg / L for groundwater.
b. The critical protective concentration level without the municipal setting designation, highlighting any exceedances.

Soil

The maximum concentrations of COC in surface soil (<15 ft bgs) were compared to the PCLs for protection of groundwater (${ }^{G W}$ Soiling) and the PCLs based on "direct" contact with the soil (${ }^{\text {Tot Soilcomb). The maximum }}$ concentrations of COCs in subsurface soil (>15 ft bgs) were compared to the groundwater protection PCLs (${ }^{\mathrm{GW}}$ Soillng) and the inhalation of vapors PCLs (AirSoillnh-v). Without an MSD in place, the critical PCLs for surface and subsurface soil are the ${ }^{\text {GW }}$ Soillng PCLs. Once an MSD is in place, the ingestion of groundwater will be eliminated and the resultant critical PCLs for surface and subsurface soil will be the PCLs for direct contact (TotSoilcomb) and inhalation of vapors originating from the soil (${ }^{\text {AirSoillnh-v), respectively. }}$

The maximum concentrations for all COCs, including TCE, cis-1,2-DCE, VC, and 1,1-DCE, reported in surface soil are provided on Table E.1. Cumulative concentrations of all COCs in surface soil are provided on Table E. 4 and exceedances are detailed on Figure E.1. The areal extent of surface soil that exceeds the ${ }^{\text {Gw }}$ Soilng PCL for TCE, without a MSD in place, is represented as the area within the light blue zone on Figure E. 1 and highlighted light blue on all provided tables. As shown, surface soil collected from onsite soil borings MW-01, MW-10, SB-20, SB-22, SB-23, and SB-A and offsite soil boring MW-09 represent the extent of the surface soil that exceeds the ${ }^{G W}$ Soiling PCLs for TCE and associated degradation products without a MSD. More specifically, three volatile organic compound (VOC) constituents (TCE, cis-1,2-DCE, and VC) were reported to be present above the ${ }^{\text {GW }}$ Soiling PCLs in soil samples at four locations (MW-01, MW-09, SB-A, and SB-23) on the designated property. Two VOC constituents (TCE and cis-1,2-DCE) were reported to be present above the ${ }^{\text {Gw }}$ Soiling PCLs in one soil sample (SB-20) and TCE was estimated to exceed the ${ }^{\text {Gw }}$ Soiling PCL at two locations (SB-22 and MW-10). To assist in the delineation, photoionization detector (PID) readings from the sampling activities were correlated with laboratory reported soil concentrations. No TPH, metals, or other VOC constituents were reported above the ${ }^{\text {TotSoilcomb PCLs in surface soil samples. }}$

The maximum concentrations of COC for subsurface soil are provided on Table E.2, and cumulative concentrations are reported on Table E. 5 and detailed on Figure E.2. The areal extent of subsurface soil that exceeds the ${ }^{\text {GW }}$ Soiling PCL for TCE, without a MSD in place, is represented as the area within the light blue zone on Figure E. 2 and highlighted light blue on all provided tables. As shown, subsurface soil collected from onsite soil borings MW-01, MW-02, MW-04, MW-10, SB-B, SB-C, SB-20, and SB-22 and offsite soil boring MW-09 represent the extent of the subsurface soil that exceeds the ${ }^{\text {GW }}$ Soiling PCLs for TCE and other chlorinated solvent constituents. More specifically, four VOC constituents (TCE, cis-1,2-DCE, VC, and 1,1DCE) were reported to be present above the ${ }^{\text {GW }}$ Soiling PCLs in soil samples at two locations (SB-B and SB-C) on the western portion of the designated property. Three VOC constituents (TCE, cis-1,2-DCE, and VC) were reported to be present above the ${ }^{\mathrm{GW}}$ Soil ng PCLs in soil samples at one location (SB-22) on the eastern portion of the designated property. Two VOC constituents (TCE and cis-1,2-DCE) were detected or estimated above the ${ }^{\text {GW }}$ Soiling PCLs in soil samples at six locations (MW-01, MW-02, MW-04, MW-10, SB-20 and SB-23).

Groundwater

The maximum concentrations for groundwater are provided on Table E. 3 of Appendix E and detailed on Figure C. 6 of Appendix C, and cumulative concentrations are reported on Table C. 1 of Appendix C. The areal extent of groundwater that exceeds the ${ }^{\text {Air }} \mathrm{GW}_{\text {Inh-v }}$ PCL for TCE, with a MSD in place, is represented as the area within the yellow outline on Figures C. 4 and C. 6 and highlighted yellow on all provided tables. Currently, no groundwater samples have been reported below the ${ }^{\text {Air }} \mathrm{GW}_{\operatorname{Inh}-\mathrm{v}}$ (PCL with MSD in place) and above the ${ }^{G W} \mathrm{GW}_{\mathrm{Ing}}$ PCL for TCE (PCL without a MSD in place) with the exception of one sample collected from monitoring well MW-01 in September 2021 and two samples collected from MW-02 in 2023. One groundwater sample collected from MW-05 in 2023 was reported at the PCL. As shown, groundwater collected from onsite monitoring wells MW-01, MW-02, MW-04 and MW-10 and offsite monitoring well MW-09 represent the extent of the groundwater that exceeds the AirGWInh-v PCLs for TCE. Other chlorinated solvent constituents including PCE, cis-1,2-DCE, VC, 1,1-DCE, trans-1,2-DCE and 1,1,2-TCA were reported above the ${ }^{\text {GW GW Ing }}$ PCLs in at least one groundwater sample collected from monitoring wells MW-01, MW-02, MW-04, MW-09 and MW-10. The petroleum compound toluene and TPH was also reported in excess of the ingestion PCL from at least one groundwater sample collected from monitoring wells MW-01, MW-4, MW-09 and MW-10.

The components of Appendix E are detailed below.

Appendix E Attachments

- Table E. 1 Surface Soil Residential Assessment Levels
- Table E. 2 Subsurface Soil Residential Assessment Levels
- Table E. 3 Groundwater Residential Assessment Levels
- Table E. 4 Summary of Surface Soil Analytical Results
- Table E. 5 Summary of Subsurface Soil Analytical Results
- Figure E. 1 Surface Soil COC PCLE Map
- Figure E. 2 Subsurface Soil COC PCLE Map

TABLE E. 1
SURFACE SOIL RESIDENTIAL ASSESSMENT LEVELS
GOFORTH STREET PROPERTY
HOUSTON, TEXAS 77021

Analyte	Source area size (acres)	$\begin{aligned} & { }^{\mathrm{Gw}} \text { Soil }_{\text {lng }} \\ & (\mathrm{mg} / \mathrm{kg}) \\ & \hline \end{aligned}$		$\begin{gathered} { }^{\text {Tot }} \text { Soil }_{\text {Comb }} \\ (\mathrm{mg} / \mathrm{kg}) \\ \hline \end{gathered}$	TexasSpecific Background (mg/kg)	MQL (mg/kg)	SDL (mg/kg)	Sample ID	Maximum Concentration				
				(ft)						(mg/kg)			
TPH (TX1005)													
C6-C12	0.5	65	1		1,600	--	110	16	SS-F	0-6 inches	09/02/2021	<16	U
C12-C28	0.5	200	1	2,300	--	110	21	SS-F	0-6 inches	09/02/2021	<21	U	
C28-C35	0.5	200	1	2,300	--	110	21	SS-F	0-6 inches	09/02/2021	<21	U	
total C6-C35	0.5	--	--	--	--	110	16	SS-F	0-6 inches	09/02/2021	<16	U	
Metals (SW6020/SW7471A)													
Antimony	0.5	5.4	1	15	1.0	0.885	0.115	SS-F	0-6 inches	09/02/2021	0.566	J	
Arsenic	0.5	5.0	1	24	5.9	0.885	0.124	SS-F	0-6 inches	09/02/2021	2.92		
Barium	0.5	440	1	8,100	300	0.885	0.0531	SS-F	0-6 inches	09/02/2021	131		
Beryllium	0.5	1.8	1	38	1.5	0.885	0.0372	SS-F	0-6 inches	09/02/2021	0.551	J	
Cadmium	0.5	1.5	1	52	--	0.885	0.0478	SS-F	0-6 inches	09/02/2021	0.472	J	
Chromium	0.5	2,400	1	33,000	30	0.885	0.0407	SS-F	0-6 inches	09/02/2021	17.6		
Lead	0.5	3.0	1	500	15	0.885	0.0230	SS-F	0-6 inches	09/02/2021	49		
Nickel	0.5	160	1	840	10	0.885	0.0849	SS-F	0-6 inches	09/02/2021	11.4		
Selenium	0.5	2.3	1	310	0.3	0.885	0.161	SS-F	0-6 inches	09/02/2021	0.534	J	
Silver	0.5	0.48	1	97	--	0.885	0.0265	SS-F	0-6 inches	09/02/2021	0.18	J	
Mercury	0.5	2.1	1	8.3	0.04	0.00606	0.000857	SS-F	0-6 inches	09/02/2021	0.0545		
VOCs (SW8260B)													
Acetone	30	21	1	59,000	--	130	13	SB-20-11	11	04/06/2022	<13	U	
Benzene	30	0.013	1	69	--	32	3.2	SB-20-11	11	04/06/2022	0.0075		
Bromodichloromethane	30	0.18	1	98	--	32	3.2	SB-20-11	11	04/06/2022	<3.2	U	
Bromoform	30	0.22	1	280	--	32	3.8	SB-20-11	11	04/06/2022	<3.8	U	
Bromomethane	30	0.07	1	24	--	64	6.4	SB-20-11	11	04/06/2022	<6.4	U	
Carbon disulfide	30	6.8	1	3,300	--	64	3.8	SB-20-11	11	04/06/2022	<3.8	U	
Carbon tetrachloride	30	0.031	1	23	--	32	3.8	SB-20-11	11	04/06/2022	<3.8	U	
Chlorobenzene	30	0.6	1	320	--	32	3.8	SB-20-11	11	04/06/2022	<3.8	U	
Chlorobromomethane	30	1.5	--	3,300	--	=							
Chloroethane	30	15	1	23,000	--	64	5.1	SB-20-11	11	04/06/2022	<5.1	U	
Chloroform	30	0.17	1	8.0	--	32	3.2	SB-20-11	11	04/06/2022	<3.2	U	
Chloromethane	30	0.20	1	84	--	64	3.2	SB-20-11	11	04/06/2022	<3.2	U	
Cumene (Isopropylbenzene)	30	170	1	3,000	--	32	5.8	SB-20-11	11	04/06/2022	<5.8	U	
Cyclohexane	30	2,900	1	42,000	--	32	6.4	SB-20-11	11	04/06/2022	<6.4	Un	
Dibromo-3-chloropropane, 1,2-	30	0.0009	1	0.08	--	32	6.4	SB-20-11	11	04/06/2022	<6.4	U	
Dibromochloromethane	30	0.18	1	72	--	32	3.2	SB-20-11	11	04/06/2022	<3.2	U	
Dichlorobenzene, 1,2-	30	8.90		390	--	==							
Dichlorobenzene, 1,3-	30	3.4	1	62	--	32	6.4	SB-20-11	11	04/06/2022	<6.4	U	
Dichlorobenzene, 1,4-	30	1.1	1	250	--	32	6.4	SB-20-11	11	04/06/2022	<6.4	U	
Dichlorodifluoromethane	30	120	1	750	--	32	6.4	SB-20-11	11	04/06/2022	<6.4	U	
Dichloroethane,1,1-	30	9.2	1	8,800	--	0.0051	0.00051	MW01 (11)	11	09/01/2021	0.031		
Dichloroethane, 1,2-	30	0.0069	1	30	--	32	3.8	SB-20-11	11	04/06/2022	<3.8	U	
Dichloroethene, 1,1-	30	0.025	1	1,600	--	0.0051	0.00051	MW01 (11)	11	09/01/2021	0.023		
Dichloroethene, cis-1,2-	30	0.12	1	120	--	32	5.1	SB-20-11	11	04/06/2022	130		
Dichloroethene, trans-1,2-	30	0.25	1	370	--	0.0048	0.00048	SB-23-11	11	06/13/2022	0.026		
Dichloropropane, 1,2-	30	0.01	1	31	--	32	5.1	SB-20-11	11	04/06/2022	<5.1	U	
Dichloropropene, cis-1,3-	30	0.003	1	7.8	--	32	3.2	SB-20-11	11	04/06/2022	<3.2	U	
Dichloropropene, trans-1,3-	30	0.0180	1	26	--	32	3.8	SB-20-11	11	04/06/2022	<3.8	U	
Ethylbenzene	30	3.8	1	5,300	--	32	4.5	SB-20-11	11	04/06/2022	<4.5	U	
Ethylene dibromide (Dibromoethane, 1,2-)	30	0.0001	1	2.1	--	32	3.2	SB-20-11	11	04/06/2022	<3.2	U	
Hexanone, 2-	30	1.6	1	380	--	64	9	SB-20-11	11	04/06/2022	<9	U	
Methyl acetate	30	24	1	82,000	--	32	4.5	SB-20-11	11	04/06/2022	<4.5	U	
Methyl ethyl keytone (Butanone, 2-)	30	15	1	33,000	--	64	13	SB-20-11	11	04/06/2022	<13	U	
Methyl isobutyl ketone (Methyl-2-pentanone, 4-)	30	2.5	1	5,400	--	64	6.4	SB-20-11	11	04/06/2022	<6.4	U	
Methylcyclohexane	30	7,800	1	22,000	--	32	8.3	SB-20-11	11	04/06/2022	<8.3	U	
Methylene chloride	30	0.0065	1	1,500	--	64	6.400	SB-20-11	11	04/06/2022	<6.4	U	
MTBE (Methyl tert-butyl ether)	30	0.310	1	590	--	32	3.200	SB-20-11	11	04/06/2022	<3.2	U	
Styrene	30	1.6	1	4,300	--	32	4.5	SB-20-11	11	04/06/2022	<4.5	U	
Tetrachloroethane, 1,1,2,2-	30	0.012	1	30	--	32	5.1	SB-20-11	11	04/06/2022	<5.1	U	
Tetrachloroethene (PCE)	30	0.025	1	420	--	32	4.5	SB-20-11	11	04/06/2022	<4.5	U	
Toluene	30	4.1	1	5,400	--	0.0051	0.00061	MW01 (11)	11	09/01/2021	0.017		
Trichlor-1,2,2-rrifluoroethane, 1,1,2-	30	40,000	1	39,000	--	32	4.5	SB-20-11	11	04/06/2022	<4.5	U	
Trichlorobenzene, 1,2,4-	30	2.4	1	70	--	32	6.4	SB-20-11	11	04/06/2022	<6.4	U	
Trichloroethane, 1,1,1-	30	0.81	1	32,000	--	32	3.2	SB-20-11	11	04/06/2022	<3.2	U	
Trichloroethane, 1,1,2-	30	0.01	1	10	--	32	3.2	SB-20-11	11	04/06/2022	<3.2	U	
Trichloroethene (TCE)	30	0.017	1	11	--	32	3.8	SB-20-11	11	04/06/2022	1300		
Trichlorofluoromethane	30	64	1	25,000	--	32	3.2	SB-20-11	11	04/06/2022	<3.2	U	
Vinyl chloride	30	0.011	1	3.4	--	0.12	0.046	MW01 (11)	11	09/01/2021	0.70		
Xylene, m,p-	30	53	1	4,700	--	0.0016	0.010	MW01 (11)	11	09/01/2021	0.0083	J	
Xylene, o-	30	35	1	29,000	--	0.0027	0.0010	MW01 (11)	11	09/01/2021	0.0027	J	
Xylenes, Total	30	61	1	3,700	--	0.011	0.0010	MW01 (11)	11	09/01/2021	0.011		
Vinyl acetate	30	27	1	1,500	--	=							

NOTES:
${ }^{1}$ Based on TRRP Tables dated 10 May 2023.
VOCs - Volatile Organic Compounds; TPH - Total Petroleum Hydrocarbons
mg/kg-dry - milligram per kilogram on dry-weight; -- No value; == Constituent was not analyzed
< \& U - Analyte not detected above Sample Detection Limit (SDL). n - Not offered for accreditation
J - Analyte was identified above the SDL and below the Method Quantitation Limit (MQL)
Bold values indicate concentration reported above the Method Quantitation Limit (MQL).
Light blue shaded value indicates the surface soil sample result exceeds Tier 1 PCL for ${ }^{6 w}$ Soil ${ }_{\text {lng }}$ Yellow shaded value indicates the surface soil sample result exceeds the MSD PCL (${ }^{\text {Tot }}{ }^{\text {Soil }}{ }_{\text {comb }}$)

TABLE E. 2
SUBSURFACE SOIL RESIDENTIAL ASSESSMENT LEVELS
GOFORTH STREET PROPERTY

Analyte	Source area size (acres)	${ }^{\text {GW }}$ Soil		Air $^{\text {Soil }}{ }_{\text {Inh-V }}$ (mg/kg)	MQL (mg/kg)	SDL (mg/kg)	Maximum Concentration				
							Sample ID	Sample	Sample Date	Conc	
		(mg/kg)	Tier					Depth (ft)		(mg/kg)	
VOCs (SW8260B-ALS List)											
Acetone	30	21	1	310,000	6.6	0.66	SB-20-30	30	04/06/2022	<0.66	U
Benzene	30	0.013	1	84	0.00053	0.0053	SB-C (17)	17	09/03/2021	0.0075	
Bromodichloromethane	30	0.18	1	--	1.6	0.16	SB-20-30	30	04/06/2022	<0.16	U
Bromoform	30	0.22	1	430	1.6	0.20	SB-20-30	30	04/06/2022	<0.20	U
Bromomethane	30	0.07	1	31	3.3	0.33	SB-20-30	30	04/06/2022	<0.33	U
Carbon disulfide	30	6.8	1	5,500	3.3	0.20	SB-20-30	30	04/06/2022	<0.20	U
Carbon tetrachloride	30	0.031	1	31	1.6	0.20	SB-20-30	30	04/06/2022	<0.20	U
Chlorobenzene	30	0.6	1	390	1.6	0.20	SB-20-30	30	04/06/2022	<0.20	U
Chlorobromomethane	30	1.5	1	--	0.005	0.0018	B-3 (15-20)	15-20	10/02/2010	<0.0018	U
Chloroethane	30	15	1	79,000	3.3	0.26	SB-20-30	30	04/06/2022	<0.26	U
Chloroform	30	0.17	1	8.0	1.6	0.16	SB-20-30	30	04/06/2022	<0.16	U
Chloromethane	30	0.20	1	100	3.3	0.16	SB-20-30	30	04/06/2022	<0.16	U
Cumene (Isopropylbenzene)	30	170	1	4,800	0.0053	0.00095	SB-C (17)	17	09/03/2021	0.0019	J
Cyclohexane	30	2,900	1	47,000	1.6	0.33	SB-20-30	30	04/06/2022	<0.33	Un
Dibromo-3-chloropropane, 1,2-	30	0.00087	1	0.081	1.6	0.33	SB-20-30	30	04/06/2022	<0.33	U
Dibromochloromethane	30	0.18	1	--	1.6	0.16	SB-20-30	30	04/06/2022	<0.16	U
Dichlorobenzene, 1,2-	30	8.9	1	410	1.6	0.33	SB-20-30	30	04/06/2022	<0.33	U
Dichlorobenzene, 1,3-	30	3.4	1	63	1.6	0.33	SB-20-30	30	04/06/2022	<0.33	U
Dichlorobenzene, 1,4-	30	1.1	1	6,100	1.6	0.33	SB-20-30	30	04/06/2022	<0.33	U
Dichlorodifluoromethane	30	120	1	790	1.6	0.23	SB-20-30	30	04/06/2022	<0.23	U
Dichloroethane,1,1-	30	9.2	1	19,000	0.00053	0.0053	SB-C (17)	17	09/03/2021	0.019	
Dichloroethane, 1,2-	30	0.0069	1	54	1.6	0.20	SB-20-30	30	04/06/2022	<0.20	U
Dichloroethene, 1,1-	30	0.025	1	2,700	0.24	0.024	SB-C (17)	17	09/03/2021	2.3	
Dichloroethene, cis-1,2-	30	0.12	1	470	2.4	0.39	SB-C (17)	17	09/03/2021	13	
Dichloroethene, trans-1,2-	30	0.25	1	470	0.0053	0.00053	SB-C (17)	17	09/03/2021	0.018	
Dichloropropane, 1,2-	30	0.011	1	32	1.6	0.26	SB-20-30	30	04/06/2022	<0.26	U
Dichloropropene, cis-1,3-	30	0.0033	1	160	1.6	0.16	SB-20-30	30	04/06/2022	<0.16	U
Dichloropropene, trans-1,3-	30	0.018	1	46	1.6	0.20	SB-20-30	30	04/06/2022	<0.20	U
Ethylbenzene	30	3.8	1	15,000	0.0053	0.00074	SB-C (17)	17	09/03/2021	0.17	
Ethylene dibromide (Dibromoethane, 1,2-)	30	0.00010	1	6.8	1.6	0.16	SB-20-30	30	04/06/2022	<0.16	U
Hexanone, 2-	30	1.6	1	420	3.3	0.46	SB-20-30	30	04/06/2022	<0.46	U
Methyl acetate	30	24	1	--	1.6	0.23	SB-20-30	30	04/06/2022	<0.23	U
Methyl ethyl keytone (Butanone, 2-)	30	15	1	100,000	3.3	0.43	SB-20-30	30	04/06/2022	<0.43	U
Methyl isobutyl ketone (Methyl-2-pentanone, 4-)	30	2.5	1	30,000	3.3	0.6600	SB-20-30	30	04/06/2022	<0.66	U
Methylcyclohexane	30	7,800	1	24,000	1.6	0.33	SB-20-30	30	04/06/2022	<0.33	U
Methylene chloride	30	0.0065	1	6,600	3.3	0.33	SB-20-30	30	04/06/2022	<0.33	U
MTBE (Methyl tert-butyl ether)	30	0.31	1	710	1.6	0.16	SB-20-30	30	04/06/2022	<0.16	U
Styrene	30	1.6	1	5,800	1.6	0.23	SB-20-30	30	04/06/2022	<0.23	U
Tetrachloroethane, 1,1,2,2-	30	0.012	1	--	1.6	0.26	SB-20-30	30	04/06/2022	<0.26	U
Tetrachloroethene (PCE)	30	0.025	1	480	0.0053	0.00074	SB-C (17)	17	09/03/2021	0.019	
Toluene	30	4.1	1	32,000	0.24	0.049	SB-C (17)	17	09/03/2021	1.4	
Trichlor-1,2,2-trifluoroethane, 1,1,2-	30	40,000	1	39,000	1.6	0.23	SB-20-30	30	04/06/2022	<0.23	U
Trichlorobenzene, 1,2,4-	30	2.4	1	78	1.6	0.33	SB-20-30	30	04/06/2022	<0.33	U
Trichloroethane, 1,1,1-	30	0.81	1	40,000	1.6	0.16	SB-20-30	30	04/06/2022	<0.16	U
Trichloroethane, 1,1,2-	30	0.01	1	12	1.6	0.16	SB-20-30	30	04/06/2022	<0.16	U
Trichloroethene (TCE)	30	0.017	1	16	27	3.3	MW-10-23	23	09/01/2022	640	
Trichlorofluoromethane	30	64	1	--	1.6	0.16	SB-20-30	30	04/06/2022	<0.16	U
Vinyl chloride	30	0.011	1	22	0.098	0.039	SB-C (17)	17	09/03/2021	0.37	
Xylene, m,p-	30	53	1	4,800	0.49	0.078	SB-C (17)	17	09/03/2021	1.1	
Xylene, o-	30	35	1	35,000	0.24	0.049	SB-C (17)	17	09/03/2021	0.35	
Xylenes, Total	30	61	1	4,800	0.24	0.049	SB-C (17)	17	09/03/2021	1.4	
Vinyl acetate	30	27	1	1,600	0.01	0.00093	B-3 (15-20)	15-20	10/04/2010	<0.00093	U
SVOCs (SW8270C) ${ }^{2}$											
Bis(2-ethylhexyl)phthalate	30	82	1	--	0.750	0.160	B-3 (15-20)	15-20	10/04/2010	0.850	

NOTES:
${ }^{1}$ Based on TRRP Tables dated 10 May 2023.
VOCs - Volatile Organic Compounds; SVOCs - Semi-Volatiol Organic Compounds
$\mathrm{mg} / \mathrm{kg}$-dry - milligram per kilogram on dry-weight
-- No value; == Constituent was not analyzed.
$<\& U-$ Analyte not detected above Sample Detection Limit (SDL). n - Not offered for accreditation.
J - Analyte was identified above the SDL and below the Method Quantitation Limit (MQL).
Bold values indicate concentration reported above the Method Quantitation Limit (MQL).
Light blue shaded value indicates the surface soil sample result exceeds Tier 1 PCL for ${ }^{6 w}$ Soil ${ }_{\text {ng }}$
Yellow shaded value indicates the surface soil sample result exceeds the MSD PCL for (Air Soil $_{\text {Inh-v }}$)

TABLE E. 3
GROUNDWATER RESIDENTIAL ASSESSMENT LEVELS
GOFORTH STREET PROPERTY

Analyte	${ }^{{ }^{6} W_{G W}}{ }_{\text {lng }}$ (mg/L)				SDL (mg / L)	Maximum Concentration			
		${ }^{\text {Air }} \mathrm{W}_{\text {Inh-V }}$		MQL (mg/L)					
			Source Area			Sample ID	Sample Date	Con	
		(mg/L)	(acres)					(mg/L)	
VOCs (SW8260B-ALS List)									
Acetone	22	1,000,000	30	0.0020	0.0020	MW-08	07/13/2022	0.16	
Benzene	0.0050	23	30	0.0010	0.00020	MW02	09/04/2021	0.00031	J
Bromoform	0.080	672	30	0.10	0.040	MW-10	09/13/2022	<0.040	U
Bromomethane	0.034	4.6	30	0.10	0.040	MW-10	09/13/2022	<0.040	U
Butanone, 2-	15	620,000	30	0.0020	0.00050	MW-08	07/13/2022	0.022	
Carbon disulfide	2.4	630	30	0.20	0.060	MW-10	09/13/2022	<0.060	U
Carbon tetrachloride	0.0050	2.5	30	0.10	0.050	MW-10	09/13/2022	<0.050	U
Chlorobenzene	0.10	150	30	0.100	0.03	MW-10	09/13/2022	<0.030	U
Chlorobromomethane	0.98	--	30	--	--	--	--	--	--
Chloroethane	9.8	15,000	30	0.10	0.030	MW-10	09/13/2022	<0.030	U
Chloroform	0.080	2.6	30	0.10	0.020	MW-10	09/13/2022	<0.020	U
Chloromethane	0.070	4.7	30	0.050	0.010	MW-05	07/14/2022	0.0015	
Cyclohexane	120	770	30	5.0	0.60	MW-04	12/15/2023	<0.60	Un
Dibromo-3-chloropropane, 1,2-	0.00020	0.08	30	0.10	0.10	MW-10	09/13/2022	<0.10	U
Dibromochloromethane	0.080	--	30	0.10	0.030	MW-10	09/13/2022	<0.030	U
Dichlorobenzene, 1,2-	0.60	150	30	0.10	0.050	MW-10	09/13/2022	<0.050	U
Dichlorobenzene, 1,3-	0.73	25	30	0.10	0.040	MW-10	09/13/2022	<0.040	U
Dichlorobenzene, 1,4-	0.075	2,200	30	0.10	0.040	MW-10	09/13/2022	<0.040	U
Dichlorodifluoromethane	4.9	7.8	30	0.10	0.030	MW-10	09/13/2022	<0.030	U
Dichloroethane, 1,1-	4.9	5,600	30	0.050	0.010	MW-01	04/21/2023	0.18	
Dichloroethane, 1,2-	0.0050	33	30	0.0010	0.00020	MW-02	09/04/2021	0.00033	J
Dichloroethene, 1,1-	0.0070	220	30	0.10	0.020	MW-04	07/14/2022	11	
Dichloroethene, cis-1,2-	0.070	160	30	5.0	0.60	MW-01	12/15/2023	32	
Dichloroethene, trans-1,2-	0.10	99	30	0.050	0.010	MW-01	04/21/2023	0.17	
Dichloropropane, 1,2-	0.0050	15	30	0.10	0.050	MW-10	09/13/2022	<0.050	U
Dichloropropene, cis-1,3-	0.0017	89	30	0.10	0.010	MW-10	09/13/2022	<0.010	U
Dichloropropene, trans-1,3-	0.0091	25	30	0.10	0.020	MW-10	09/13/2022	<0.020	U
Dibromoethane, 1,2-	0.00005	76	30	0.10	0.020	MW-10	09/13/2022	<0.020	U
Ethylbenzene	0.70	3,800	30	0.10	0.030	MW-04	07/14/2022	0.27	
Hexanone, 2-	1.20	1,500	30	0.050	0.010	MW-09	09/13/2022	<0.050	U
Isopropylbenzene	2.40	--	30	0.10	0.030	MW-10	09/13/2022	<0.030	U
Methyl acetate	24	--	30	0.10	0.10	MW-10	09/13/2022	<0.10	U
Methylcyclohexane	120	180	30	0.10	0.030	MW-10	09/13/2022	<0.030	U
Methyl-2-pentanone, 4-	2.0	87,000	30	0.20	0.070	MW-10	09/13/2022	<0.070	U
Methylene chloride	0.005	2,800	30	0.20	0.10	MW-10	09/13/2022	<0.10	U
Methyl tert-butyl ether	0.24	520	30	0.10	0.020	MW-10	09/13/2022	<0.020	U
Styrene	0.10	2,000	30	0.10	0.030	MW-10	09/13/2022	<0.030	U
Tetrachloroethane, 1,1,2,2-	0.0046	--	30	0.10	0.050	MW-10	09/13/2022	<0.050	U
Tetrachloroethene (PCE)	0.0050	64	30	0.0010	0.00020	MW02	09/04/2021	0.0062	
Toluene	1.0	8,200	30	0.10	0.020	MW-04	07/14/2022	1.8	
Trichlor-1,2,2-trifluoroethane, 1,1	730	200	30	0.10	0.050	MW-10	09/13/2022	<0.050	U
Trichlorobenzene, 1,2,4-	0.070	20	30	0.10	0.050	MW-10	09/13/2022	<0.050	U
Trichloroethane, 1,1,1-	0.20	5,200	30	0.10	0.020	MW-10	09/13/2022	<0.020	U
Trichloroethane, 1,1,2-	0.005	10	30	0.0010	0.00030	MW02	09/04/2021	0.013	
Trichloroethene	0.005	3.1	30	5.0	1.0	MW-04	07/14/2022	290	
Trichlorofluoromethane	7.3	--	30	0.10	0.030	MW-10	09/13/2022	<0.030	U
Vinyl chloride	0.0020	0.49	30	0.050	0.010	MW-01	04/21/2023	8.7	
Xylene, m,p-	10	1,400	30	0.20	0.050	MW-04	07/14/2022	0.74	
Xylene, o-	10	98,000	30	0.10	0.03	MW-04	07/14/2022	0.47	
Xylenes, Total	10	1,300	30	0.10	0.03	MW-04	07/14/2022	1.2	
TPH (TX1005)									
C6-C12	0.98	320	30	0.46	0.19	MW-10	04/04/2023	55	
C12-C28	0.98	970	30	0.46	0.19	MW-10	04/04/2023	<0.19	U
C28-C35	0.98	970	30	0.46	0.19	MW-10	04/04/2023	<0.19	U
total C6-C35	--	--	30	0.46	0.19	MW-10	04/04/2023	55.0	

NOTES:
${ }^{1}$ Based on TRRP Tables dated 10 May 2023.
VOCs - Volatile Organic Compounds
PCL - Protective Concentration Limit
mg / l - milligrams per liter
-- No value.
== Constituent was not analyzed.
< \& U - Analyte not detected above Sample Detection Limit (SDL).
J - Analyte was identified above the SDL and below the Method Quantitation Limit (MQL).
n - Not offered for accreditation.
Bold values indicate concentration reported above the Method Quantitation Limit (MQL).
Light blue shaded value indicates the groundwater sample result exceeds the Tier 1 PCL for ${ }^{6}{ }^{\mathrm{G}} \mathrm{GW} W_{\text {ing }}$
Yellow shaded value indicates the groundwater sample result exceeds the MSD PCL (${ }^{\text {Air }} \mathrm{GW}_{\text {Inh-v }}$)
SUMMARY OF SURFACE SOIL ANALYTICAL RESULTS GOFORTH STREET PROPERTY

Analyte	TRRP Tier 1Residential PCLs ${ }^{1}$30-acre			$\begin{array}{r} \text { Sample ID } \\ \text { Lab ID } \\ \text { Date } \\ \text { Depth } \\ \text { GW Class } \\ \text { Units } \end{array}$	SS-FHS21090152-02$9 / 2 / 2021$$0-6$ inchesClass 2mg/kg-dry		SB-A (15) HS21090243-02 $9 / 3 / 2021$ 15 ft bgs Class 3 mg/kg-dry		SB-D (14) HS21090243-05 $9 / 3 / 2021$ 14 ft bgs Class 3 mg/kg-dry		SB-20-11 HS22040281-02 $4 / 6 / 2022$ 11 ft bgs Class 3 mg/kg-dry	SB-23-11 HS22060711-03 $6 / 13 / 2022$ 11 ft bgs Class 2 mg/kg-dry		SB-24-11 HS22090159-06 $9 / 1 / 2022$ 11 ft bgs Class 2 mg/kg-dry		SB-25-11 HS22090159-04 $9 / 1 / 2022$ 11 ft bgs Class 2 mg/kg-dry		MW01 (11) HS21090129 01 $9 / 1 / 2021$ 11 ft bgs Class 3 mg/kg-dry		MW02 (11) HS21090152-01 9/2/2021 11 ft bgs Class 3 mg/kg-dry			MW-07R-11 HS22070237-01 $7 / 5 / 2022$ 11 ft bgs Class 2 mg/kg-dry	
	${ }^{\text {Tot }}$ Soil ${ }_{\text {comb }}$ mg/kg	$\begin{gathered} { }^{\mathrm{GW}^{\mathrm{W}} \text { Soil }_{\text {lng }}} \\ \mathrm{mg} / \mathrm{kg} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Air }^{2} \text { oil }_{\text {lnh-v }} \\ & \mathrm{mg} / \mathrm{kg} \\ & \hline \end{aligned}$																					
TPH (TX1005)																								
C6-C12	1,100	33	1,600		<16	U	==		==		==	=-		=		=-		=			=		==	
C12-C28	2,000	99	7,800		<21	U	==		==		==	==		=		==		$=$			==		==	
C28-C35	2,000	99	7,800		<21	U	==		=-		=-	=-		==		=		=-			==		==	
total C6-C35	--	--	--		<16	U	==		==		=-	=		=		=		=			=		=	
Metals (Texas 11) ${ }^{3}$																								
Antimony	15	5.4	--		0.566	J	==		=		==	==		=		=		==			==		=	
Arsenic	24	5.0	--		2.92		=		==		==	==		==		==		=			=		==	
Barium	8,100	440	--		131		==		==		=	==		==		=		==			==		==	
Beryllium	38	1.8	--		0.551	J	=		=		==	=		==		=		=			=		==	
Cadmium	52	1.5	--		0.472	J	==		==		==	==		==		==		==			=		==	
Chromium	33,000	2,400	--		17.6		=		=-		=-	=-		=-		==		=			=		=	
Lead	500	3.0	--		49.0		==		$=$		==	=		=-		=		==			=-		==	
Nickel	840	160	--		11.4		=-		==		=	=-		=		==		=			=		=	
Selenium	310	2.3	--		0.534	J	==		=		==	=		==		=		==			=		==	
Silver	97	0.48	--		0.180	J	=		==		==	=-		==		=-		==			=		==	
Mercury	8.3	2.1	8.0		0.0545		==		=-		==	==		==		=-		==			=		=	
VOCs (SW8260C) ${ }^{2}$																								
Benzene	69	0.013	84		<0.00047	U	<0.00053	U	<0.00048	u	<3.2 U	<0.00048	U	<0.00045	U	<0.00050	U	<0.00051	U		<0.00047	U	<0.00045	U
Dichloroethane, 1,1-	8,800	9.2	19,000		<0.00047	U	<0.00053	U	<0.00048	U	<3.2 U	<0.00048	U	<0.00045	U	<0.00050	U	0.031			<0.00047	U	<0.00045	U
Dichloroethene, 1,1-	1,600	0.025	2,700		<0.00047	U	<0.00053	U	<0.00048	U	<3.2 U	0.0075		<0.00045	U	<0.00050	\cup	0.023			<0.00047	U	<0.00045	U
Dichloroethene, cis-1,2-	120	0.12	470		<0.00075	U	0.41		<0.00077	U	130	9.9		<0.00071	U	<0.00081	U	15			<0.00075	U	<0.00073	U
Dichloroethene, trans-1,2-	370	0.25	470		<0.00047	U	0.0045	J	<0.00048	U	<3.2 U	0.026		<0.00045	U	<0.00050	U	0.016			<0.00047	U	<0.00045	U
Ethylbenzene	5,300	3.8	15,000		<0.00066	U	<0.00074	U	<0.00067	U	<4.5 U	<0.00067	U	<0.00062	U	<0.00071	U	0.0027	J		<0.00066	U	<0.00064	\cup
Methylene chloride	1,500	0.0065	6,600		<0.00094	U	<0.0011	U	<0.00096	U	<6.4 U	<0.00095	U	<0.00089	U	<0.0010	U	<0.001	U		<0.00094	U	<0.00091	\cup
MTBE (Methyl tert-butyl ether)	590	0.31	710		<0.00047	U	<0.00053	U	<0.00048	U	<3.2 U	<0.00048	\cup	<0.00045	U	<0.00050	U	<0.00051	U		<0.00047	U	<0.00045	U
Tetrachloroethene (PCE)	420	0.025	480		<0.00066	U	<0.00074	U	<0.00067	U	<4.5 U	<0.00067	U	<0.00062	U	<0.00071	U	<0.00071	U		<0.00066	U	<0.00064	U
Toluene	5,400	4.1	32,000		<0.00057	U	0.0018	J	<0.00058	\cup	<3.8 U	0.012		<0.00054	U	<0.00060	\cup	0.017			<0.00057	U	<0.00054	U
Trichloroethene (TCE)	11	0.017	16		<0.00057	U	0.11		0.0020	J	1300	8.5		<0.00061	U	<0.00061	U	27			<0.00057	U	<0.00054	U
Vinyl chloride	3.4	0.011	22		<0.00075	U	0.013		<0.00077	U	<5.1	0.4		<0.00071	U	<0.00081	U	0.70			<0.00075	U	<0.00073	U
Xylene, m,p-	4,700	53	4,800		<0.0015	U	<0.0017	U	<0.0015	U	<10 U	<0.0015	U	<0.0014	U	<0.0016	U	0.0083	J		<0.0015	U	<0.0015	U
Xylene, o-	29,000	35	35,000		<0.00094	U	<0.0011	U	<0.00096	U	<6.4 U	<0.00095	\cup	<0.00089	U	<0.0010	U	0.0027	J		<0.00094	U	<0.00091	U
Xylenes, Total	3,700	61	4,800		<0.00094	\cup	<0.0011	U	<0.00096	U	<6.4 U	<0.00095	U	<0.00089	U	<0.0010	U	0.011			<0.00094	U	<0.00091	U

[^6]TABLE E. 4
SUMMARY OF SURFACE SOIL ANALYTICAL RESULTS
GOFORTH STREET PROPERTY GOFORTH STREET PROPERTY
HOUSTON, TEXAS 77021

${ }^{1}$ Based on TRRP Tables dated 10 May 2023.
${ }^{2}$ Only detected analytes summarized. For the full list, see the laboratory reports.
${ }^{3}$ A 0.5 -acre source area was assumed for metals since these are not considered site specfic constitu VOCs - Volatile Organic Compounds; PCL - Protective Concentration Limit
$\mathrm{mg} / \mathrm{kg}$-dry - milligram per kilogram on dry-weight; - - No value; $==$ Constituent was not analyzed.
< \& U - Analyte not detected above Sample Detection Limit (SDL).
J - Analyte was identified above the SDL and below the Method Quantitation Limit (MQL).
n - Not offered for accreditation.
MSD - Municipal Settings Designation
Bold values indicate concentration reported above the MQL.
Light blue shaded value indicates the surface soil sample result exceeds Tier 1 PCL for ${ }^{6 w}$ Soil ${ }_{\text {lng }}$ Yellow shaded value indicates the surface soil sample result exceeds the MSD PCL (${ }^{\text {Tot }}$ Soil ${ }_{\text {comb }}$)
SUMMARY OF SUBSURFACE SOIL ANALYTICAL RESULTS

[^7]SUMMARY OF SUBSURFACE SOIL ANALYTICAL RESULTS

[^8]TABLE E. 5
SUMMARY OF SUBSURFACE SOIL ANALYTICAL RESULTS
GOFORTH STREET PROPERTY HOFORTH STREET PROPERT
HOUSTON, TEXAS 77021

${ }^{1}$ Based on TRRP Tables dated 10 May 2023.
${ }^{2}$ Only detected analytes summarized. For the full list, see the laboratory reports. A 0.5 -acre source area was assumed for metals since these are not consided VOCs - Volatile Organic Compounds; PCL - Protective Concentration Limit
$\mathrm{mg} / \mathrm{kg}$-dry - milligram per kilogram on dry-weight; -- No value; $==$ Constituent was not analyzed. $\mathrm{mg} / \mathrm{kg}$-dry - mly
< \& U - Analyte not detected above Sample Detection Limit (SDL)
J - Analyte was identified above the SDL and below the Method Q
J - Analyte was identified above the SDL and below the Method Quantitation Limit (MQL).
n - Not offered for accreditation.
Bold values indicate concentration reported above the MQL.
Light blue shaded value indicates the subsurface soil sample result exceeds Tier $1 \mathrm{PCL}^{\text {for }}{ }^{\text {Gw }}$ Soil $_{\text {ng }}$
Yellow shaded value indicates the subsurface soil sample result exceeds the MSD PCL (${ }^{\text {Air }}$ Soil $_{\text {lhh-v }}$)

This page intentionally left blank.

Abstract

APPENDIX F

If the plume extends beyond the limits of property owners listed in this application, list the owners of the additional property beneath which the plume(s) extend(s), and a summary of interactions with those property owners about the plume(s) and this MSD application. Please Note: You are not required under this item to notify affected property owners, only to provide a summary of who affected property owners are, and if there have been any communications. "No contact" can be an acceptable answer

Based on the ${ }^{\text {Air }} \mathrm{GW}_{\text {Inh-v }}$ PCLs (critical groundwater PCL with a MSD in place), the TCE plume appears to extend offsite to the residential parcel located west of monitoring well MW-09 at the address of 6522 Goforth St, Houston, Texas 77021. Based on Harris County Appraisal District (HCAD) property records, the current owner is listed as Vela Mae Beason. A notification was sent by certified mail to Vela Mae Beason on 26 January 2023 (included in this Appendix) to indicate the availability of the sampling results. In addition, as has been discussed, there appears to be a significant source of TCE on the property to the east, and groundwater beneath portions of that property is assumed to exceed the ${ }^{\mathrm{GW}}$ GW ${ }_{\text {Ing }}$ PCLs. However, notification has not been made to that property owner, since it appears that the contamination on that property did not originate from the designated property. With a MSD in place, TCE is the only COC in groundwater that extends offsite to the aforementioned property.

CERTIFIED MALL
sQ Environmental, LLC
P.O. Box 1991
Austin, TX 78767
www.SQEriv.com
(512) 900-7731

SQ Environmental, LLC

P.O. Box 1991

Austin, TX 78767-1991
(512) 900-7731
www.SQEnv.com

Vela Mae Beason
6522 Goforth Street
Houston, TX 77021
Via: USPS Certified Mai!

RE: Notification of Available Information SQE PN: 1018.029.003

SQ Environmental, LLC (SQE) prepared this letter on behalf of the current owners of the property at 6525 Goforth Street, Hindsight Investments LLC, 4-6-6-4 Challenger LLC and 542 Allston Rental LP. These owners have recently purchased properties at 6525 Goforth Street (St), 6505 Foster St and 0 Foster St. The approximate boundaries of these properties are outlined in yellow on the aerial photograph below. These three properties are considered the "subject property" for the purpose of this letter.

The purpose of this letter is to provide notice in accordance with 30 Texas Administrative Code (TAC) $\S 350.55(b)$.
Historical use of a trichloroethene (TCE) vapor degreaser by a previous property owner of 6525 Goforth St appears to have resulted in releases of the chemical TCE to the underlying soil and groundwater. TCE is a common solvent that was frequently used to remove oils from metal parts prior to repair and/or painting. It also appears likely that there has been a separate release of TCE from a property on the west side of Eastwood St, on the east side of the Foster St properties.

The subject property has been placed in the Texas Commission on Environmental Quality (TCEQ) Voluntary Cleanup Program (VCP) to address the historical release. Sampling activities are ongoing under the VCP. As part of this sampling, a well (MW-9) was installed in the City of Houston right-of-way, on the west side of Goforth St.. The approximate location of this well is shown on the figure above and is labeled MW-9. This well was installed to a depth of 55 ft below the ground surface, and the groundwater was measured to be present at a depth of 26 ft below the ground surface. A sample of the groundwater was found to contain approximately $13 \mathrm{mg} / \mathrm{kg}$ of TCE. The critical Protective Concentration Level (PCL) for TCE in groundwater is $0.005 \mathrm{mg} / \mathrm{L}$. This PCL is based on an assumption that the water is being used as the sole source of potable water for a residence. This groundwater is not being used in the area for drinking water (or any other purpose). Drinking water is provided by the City of Houston water department. The groundwater impacted from the historical use of TCE in the area is not being used for any purpose.

Please let us know if you would like to have a complete copy of the laboratory report and/or have any questions regarding this information. I may be reached by phone at 512-656-9445 or email at S.Litherland@SQEnv.com.

Sincerely,
SQ Environmental, LLC

Susan T. Litherland, P.E.
Principal

This page intentionally left blank.

APPENDIX G

A statement as to whether the source of the plume has been removed, the plume of contamination is stable (i.e. no change) or contracting, and the plume is delineated, with the basis for that statement. Please include historical sampling data.

Removal of Source:

As stated previously, two sources of TCE appear to have resulted in a release(s) to the subsurface on the eastern and western portions of the property. The source of TCE, identified in soil and groundwater on the eastern portion of the designated property, appears to have originated offsite from the adjacent eastern property located at 6518 Eastwood Street. The property to the east of the subject property is identified in historical records as a machine shop and a manufacturer of industrial and commercial machinery and equipment. Based on records obtained from historical City Directories, activities on this adjacent property with potential to have released chlorinated solvents began around 1980 and appear to have ended as late as 2017. Based on available records, the property currently operates as a boxing facility and the source of the plume is assumed to be removed.

The western source of TCE was previously identified as associated with the former tenant PSI, Inc. located at the 6525 Goforth St property. PSI was identified as having operated a TCE vapor degreaser from the 1960s through 2017. Based on available records, operation of the vapor degreaser on the subject property appears to have ended when the former tenant vacated the 6525 Goforth St tenant space in 2017. The subject property currently operates as a multi-tenant commercial space and the former vapor degreaser is no longer present and the source of the plume is removed.

Plume Evaluation:

A comprehensive site-wide groundwater investigation has been performed from 2021 to present. This has included installation of 11 groundwater monitoring wells and collection of 36 groundwater samples for laboratory analysis of volatile organic compounds (VOCs). As mentioned, two GWBUs have been identified beneath the subject property. Monitoring wells MW-01, MW-03, MW-05, MW-06, MW-07R, and MW-10 are located within the shallow saturated zone (i.e., upper GWBU). Monitoring wells MW-02, MW-08, MW-09 and MW-11 are located within the deeper saturated zone (i.e., lower GWBU). Generally, the groundwater flow direction of both the upper and lower GWBU's is towards the west to southwest. As discussed in greater detail below based on the results of sampling performed, except for the portion of the plume that appears to be originating from an off-site source, the concentrations of TCE in the groundwater appear to be stable or declining.

Plume Delineation (Vertically and Horizontally):

Plume delineation has been achieved vertically through evaluation of VOCs within the upper and lower GWBU's. Plume delineation has been achieved horizontally through installation of groundwater monitoring wells in the upgradient, down-gradient and cross-gradient directions within each respective GWBU. Monitoring wells MW-05 and MW-07R are located upgradient in the upper GWBU and have been reported with concentrations of TCE below the PCLs. Monitoring well MW-06 is located downgradient in the upper GWBU and has been reported with concentrations of TCE below the PCL. Monitoring wells MW-01, MW-04, and MW10 are located within the upper GWBU and have been reported with concentrations of TCE above the PCL. It should be noted that wells MW-01, MW-04, and MW-10, are located in areas of very low permeability and the shallow GWBU in the vicinity of these wells would be considered "Class 3 " due to the low yield (wells bail dry when sampling). Based on the sampling that has been performed, TCE in the upper GWBU plume has been
delineated horizontally, and is confined to monitoring wells MW-01, MW-04 and MW-10. The TCE plume was evaluated vertically through investigations of the deeper GWBU. Monitoring well MW-11 is located near the upgradient boundary of the subject property in the lower GWBU and has been reported with concentrations of TCE below the PCL. Downgradient monitoring well MW-08 is located in the lower GWBU and has been reported with concentrations of TCE below the PCL. Monitoring wells MW-02 and MW-09 are located within the lower GWBU and have been reported with concentrations of TCE above the PCL. Since upgradient and downgradient monitoring wells within the lower GWBU are reported with TCE concentrations below the PCL, the TCE plume emanating from the upper GWBU has been delineated vertically. The TCE plume in the lower GWBU has been delineated horizontally with the existing wells. Overall, the lower GWBU TCE plume is confined to monitoring wells MW-02 and MW-09.

Downgradient Plume Stability:

As documented herein, TCE affected shallow groundwater appears to be migrating onto the property from the east, and migrating off of the property in a deeper groundwater zone to the west. The eastern TCE release appears to originate from the eastern adjacent property located at 6518 Eastwood Street. Based on the cumulative analytical results, the downgradient TCE plume located on the western portion of the property appears to be declining (MW-02 and MW-04). Additionally, the downgradient TCE plume located offsite (MW$09)$ appears to be stable. The only increase in concentrations is that of degradation products, cis-1,2-DCE and VC , in offsite monitoring well MW-09. The attached charts below, show a time-series trend of groundwater concentrations of TCE and the associated degradation products at the downgradient affected monitoring wells (MW-02, MW-04 and MW-09). Overall, these charts illustrate the decline in TCE (parent) over time, and a subtle increase in the degradation products which indicates that the plume is stable (MW-09), declining (MW02 and MW-04), and naturally attenuating.

Upgradient Plume Delineation and Stability:
A similar analysis as described above was performed for the upgradient monitoring wells with concentrations of TCE above the PCL (MW-01 and MW-10). Based on the cumulative analytical results, the upgradient TCE plume located on the eastern portion of the property appears to be increasing (MW-01 and MW-10). Concentrations of TCE from these monitoring wells have increased since sampling began which indicates that the TCE plume is not stable on the eastern property boundary. These results coupled with a groundwater flow direction towards the southwest indicate an apparent offsite source of TCE is impacting the subject property. Even with this apparent increase in concentrations apparently originated from off-site, the plume beneath the area of the former TCE degreaser on the subject property and downgradient of this area is stable or declining. These results indicated that the rate of natural degradation is sufficient beneath the subject property to control further migration of the TCE plume.

MSD APPLICATION - DESIGNATED PROPERTY:

MSD APPLICATION - DESIGNATED PROPERTY:

This page intentionally left blank.

APPENDIX H

A statement as to whether contamination on and off the designated property without a Municipal Setting Designation will exceed a residential assessment level as defined in the Texas Risk Reduction Program or analogous residential level set by EPA, if known, and the basis for that statement.

Soil

As detailed in Appendix E, without a MSD ${ }^{\text {Gw }}$ Soil ${ }_{\text {ng }}$ PCLs would be used as the residential assessment levels (RALs) for surface and subsurface soils. As detailed on Tables E. 4 and E. 5 and portrayed on Figures E. 1 and E. 2 of Appendix E, the soil TCE PCLE zone, which is the area of soil with chemical concentrations in excess of the RALs, encompasses onsite soil borings MW-01, MW-04, MW-10, SB-20, SB-22, and SB-23 and offsite soil boring MW-09 for surface soil (<15 feet from the surface). For subsurface soil (>15 ft from the surface) the TCE PCLE zone encompasses onsite soil borings MW-01, MW-02, MW-04, MW-10, MW-11, SB-20, SB22 , SB-23 and offsite soil boring MW-09.

Groundwater

As detailed in Appendices D and E, without a MSD the ${ }^{6 W} G W_{\text {ing }}$ PCLs would be used as the RALs. As documented on Table C. 1 of Appendix C, concentrations of TCE in groundwater, both onsite (MW-01, MW02, MW-04, MW-10) and offsite (MW-09), are in excess of the RALs without an MSD.

[^0]: Based on TRRP Tables dated 10 May 2023.
 Based on TRRP Tables dated
 Only detected analytes summarized. For the full list, see the laboratory reports.
 VOCs - Volatile Organic Compounds VOCs - Volatile Organic Compounds
 PCL - Protective Concentration Limit;
 -- No value; == Constituent was not analyzed; DUP - DUPLICATE -- No value; $==$ Constituent was not analyzed; DUP - DUPLICATE
 < \& U - Analyte not detected above Sample Detection Limit (SDL).
 J - Analyte was identified above the SDL and below the Method Quantitation Limit (MQL).

 Bold values indicate concentration reported above the MQL.
 Light blue shaded value indicates the groundwater sample re
 Yellow shaded value indicates the groundwater sample result exceeds the MSD
 PCL ${ }^{\text {Ai }}$ GW
 inh.v.

[^1]: Based on TRRP Tables dated 10 May 2023.
 2 Only detected analytes summarized. For the full list, see the laboratory reports.
 VOCs - Volatile Organic Compounds. VOCs - Volatile Organic Compounds
 PCL - Protective Concentration Limit;
 -- No value; == Constituent was not analyzed; DUP - DUPLICATE -- No value; $==$ Constituent was not analyzed; DUP - DUPLICATE
 < \& U - Analyte not detected above Sample Detection Limit (SDL).
 J - Analyte was identified above the SDL and below the Method Quantitation Limit
 Bold values indicate concentration reported above the MQL.
 Light blue shaded value indicates the groundwater sample result exceeds the Tier 1
 PCL for ${ }^{6 W}{ }^{G} W_{\text {ing }}$
 Yellow shaded value indicates the groundwater sample result exceeds the MSD
 PCL ${ }^{\text {Air }}$ GW linh-v.

[^2]: Based on TRRP Tables dated 10 May 2023.
 Only detected analytes summarized. For the fu
 ${ }^{2}$ Only detected analytes summarized. For the full list, see the laboratory reports. VOCs - Volatile Organic Compounds
 PCL - Protective Concentration Limit;
 -- No value; == Constituent was not analyzed; DUP - DUPLICATE
 -- No value; $==$ Constituent was not analyzed; DUP - DUPLICATE
 < \& U - Analyte not detected above Sample Detection Limit (SDL).
 J - Analyte was identified above the SDL and below the Method Quantitation Limit
 Bold values indicate concentration reported above the MQL.
 Light blue shaded value indicates the groundwater sample result exceeds the Tier 1
 PCL for ${ }^{6 W}$ GW $W_{\text {ing }}$
 Yellow shaded value indicates the groundwater sample result exceeds the MSD
 PCL ${ }^{\text {Air }}$ GW
 inh.v.

[^3]: Based on TRRP Tables dated 10 May 2023.
 O Only detected analytes summarized. For the full list, see the laboratory reports.
 VOCs - Volatile Organic Compounds VOCs - Volatile Organic Compounds
 -- No value; == Constituent was not analyzed; DUP - DUPLICATE
 < \& U - Analyte not detected above Sample Detection Limit (SDL).
 n - Not offered for accreditation.
 (MQL).
 Bold values indicate concentration reported above the MQL.
 Light blue shaded value indicates the groundwater sample re
 Yellow shaded value indicates the groundwater sample result exceeds the MSD
 PCL ${ }^{\text {Air }}$ GW
 inh.v.

[^4]: NOTE: IMAGE GEOREFERENCED FROM GOOGLE EARTHAND
 PCLE $=$ PROTECTIVE CONCENTRATION LEVEL EXCEEDANCE.

[^5]:

[^6]: ${ }^{1}$ Based on TRRP Tables dated 10 May 2023.
 ${ }^{2}$ Only detected analytes summarized. For the full list, see the laboratory reports.
 ${ }^{3} \mathrm{~A} 0.5$-acre source area was assumed for metals since these are not considered site specfic constituents of concern. VOCs - Volatile Organic Compounds; PCL - Protective Concentration Limit
 $\mathrm{mg} / \mathrm{kg}$-dry - milligram per kilogram on dry-weight; - - No value; $==$ Constituent was not analyzed.
 $<\& \mathrm{U}$ - Analyte not detected above Sample Detection Limit (SDL).
 < \& U - Analyte not detected above Sample Detection Limit (SDL).
 n - Not offered for accreditation.
 MSD - Municipal Settings Designation
 Bold values indicate concentration reported above the MQL.
 Light blue shaded value indicates the surface soil sample result exceeds Tier 1 PCL for ${ }^{6 w}$ Soil ${ }_{\text {lng }}$
 Yellow shaded value indicates the surface soil sample result exceeds the MSD PCL (${ }^{\text {Tot }}$ Soil comb)

[^7]: ${ }^{1}$ Based on TRRP Tables dated 10 May 2023
 ${ }^{2}$ Only detected analytes summarized. For the full list, see the laboratory reports.
 ${ }^{3} \mathrm{~A} 0.5$-acre source area was assumed for metals since these are not considered site specfic constituents of concern.
 VOCs - Volatile Organic Compounds; PCL - Protective Concentration Limit
 $\mathrm{mg} / \mathrm{kg}$-dry - milligram per kilogram on dry-weight; -- No value; == Constituent was not analyzed.
 $<\& U-$ Analyte not detected above Sample Detection Limit (SDL).
 J - Analyte was identified above the SDL and below the Method Quantitation Limit (MQL).
 n - Not offered for accreditation
 MSD - Municipal Settings Designatio
 Bold values indicate concentration reported above the MQL.
 Light blue shaded value indicates the subsurface soil sample result exceeds Tier 1 PCL for ${ }^{6 \mathrm{~W}}$ Soil ${ }_{\mathrm{ng}}$
 Yellow shaded value indicates the subsurface soil sample result exceeds the MSD PCL (${ }^{\text {Air }}$ Soil $_{\text {nhn-v }}$)

[^8]: ${ }^{1}$ Based on TRRP Tables dated 10 May 2023
 ${ }^{2}$ Only detected analytes summarized. For the full list, see the laboratory reports.
 ${ }^{3} \mathrm{~A} 0.5$-acre source area was assumed for metals since these are not considered site specfic constitu
 VOCs - Volatile Organic Compounds; PCL - Protective Concentration Limit
 $\mathrm{mg} / \mathrm{kg}$-dry - milligram per kilogram on dry-weight; -- No value; == Constituent was not analyzed.
 < \& U - Analyte not detected above Sample Detection Limit (SDL).
 J - Analyte was identified above the SDL and below the Method Qu
 n - Not offered for accreditation.
 Bold values indicate concentration reported above the MQL.
 Light blue shaded value indicates the subsurface soil sample result exceeds Tier 1 PCL for ${ }^{6 w}$ Soil ${ }_{\text {ng }}$
 Yellow shaded value indicates the subsurface soil sample result exceeds the MSD PCL (${ }^{\text {Air }}$ Soil $_{\text {nhn-v }}$)

